Loading…
N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants
Innate immunity is based on the recognition of pathogen-associated molecular patterns (PAMPs). Here, we show that elongation factor Tu (EF-Tu), the most abundant bacterial protein, acts as a PAMP in Arabidopsis thaliana and other Brassicaceae. EF-Tu is highly conserved in all bacteria and is known t...
Saved in:
Published in: | The Plant cell 2004-12, Vol.16 (12), p.3496-3507 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Innate immunity is based on the recognition of pathogen-associated molecular patterns (PAMPs). Here, we show that elongation factor Tu (EF-Tu), the most abundant bacterial protein, acts as a PAMP in Arabidopsis thaliana and other Brassicaceae. EF-Tu is highly conserved in all bacteria and is known to be N-acetylated in Escherichia coli. Arabidopsis plants specifically recognize the N terminus of the protein, and an N-acetylated peptide comprising the first 18 amino acids, termed elf18, is fully active as inducer of defense responses. The shorter peptide, elf12, comprising the acetyl group and the first 12 N-terminal amino acids, is inactive as elicitor but acts as a specific antagonist for EF-Tu-related elicitors. In leaves of Arabidopsis plants, elf18 induces an oxidative burst and biosynthesis of ethylene, and it triggers resistance to subsequent infection with pathogenic bacteria. |
---|---|
ISSN: | 1040-4651 1532-298X |
DOI: | 10.1105/tpc.104.026765 |