Loading…
Overexpression of a tomato miR171 target gene SlGRAS24 impacts multiple agronomical traits via regulating gibberellin and auxin homeostasis
Summary In Arabidopsis, the miR171‐GRAS module has been clarified as key player in meristem maintenance. However, the knowledge about its role in fruit crops like tomato (Solanum lycopersicum) remains scarce. We previously identified tomato SlGRAS24 as a target gene of Sly‐miR171. To study the role...
Saved in:
Published in: | Plant biotechnology journal 2017-04, Vol.15 (4), p.472-488 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
In Arabidopsis, the miR171‐GRAS module has been clarified as key player in meristem maintenance. However, the knowledge about its role in fruit crops like tomato (Solanum lycopersicum) remains scarce. We previously identified tomato SlGRAS24 as a target gene of Sly‐miR171. To study the role of this probable transcription factor, we generated transgenic tomato plants underexpressing SlGRAS24, overexpressing SlGRAS24, overexpressing Sly‐miR171 and expressing β‐glucuronidase (GUS) under the SlGRAS24 promoter (proSlGRAS24‐GUS). Plants overexpressing SlGRAS24 (SlGRAS24‐OE) had pleiotropic phenotypes associated with multiple agronomical traits including plant height, flowering time, leaf architecture, lateral branch number, root length, fruit set and development. Many GA/auxin‐related genes were down‐regulated and altered responsiveness to exogenous IAA/NAA or GA3 application was observed in SlGRAS24‐OE seedlings. Moreover, compromised fruit set and development in SlGRAS24‐OE was also observed. These newly identified phenotypes for SlGRAS24 homologs in tomato were later proved to be caused by impaired pollen sacs and fewer viable pollen grains. At anthesis, the comparative transcriptome results showed altered expression of genes involved in pollen development and hormone signalling. Taken together, our data demonstrate that SlGRAS24 participates in a series of developmental processes through modulating gibberellin and auxin signalling, which sheds new light on the involvement of hormone crosstalk in tomato development. |
---|---|
ISSN: | 1467-7644 1467-7652 |
DOI: | 10.1111/pbi.12646 |