Loading…

Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis

Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation i...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (12), p.E2319-E2326
Main Authors: Kamynina, Elena, Lachenauer, Erica R., DiRisio, Aislyn C., Liebenthal, Rebecca P., Field, Martha S., Stover, Patrick J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3
cites cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3
container_end_page E2326
container_issue 12
container_start_page E2319
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Kamynina, Elena
Lachenauer, Erica R.
DiRisio, Aislyn C.
Liebenthal, Rebecca P.
Field, Martha S.
Stover, Patrick J.
description Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.
doi_str_mv 10.1073/pnas.1619745114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480202</jstor_id><sourcerecordid>26480202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxa2qVUmh555aWep5Yez1114qIQqlEogDcOrB8tpe4iixU9tB5L-vo1BoLx7J85s3T_MQ-kTgmIDsT9bRlGMiyCAZJ4S9QTMCA-kEG-AtmgFQ2SlG2QH6UMoCAAau4D06oIoKDlLO0K_TXHwMFtcc0lNwHleTH3wt-Pru8uI7wSY6fHt_fdM5v_bR-Vhx3NilNxk3OKbHhOt8uwpuuzTV4zGkso117ksoR-jdZJbFf3yuh-j-4vzu7LK7uvnx8-z0qrOM9bUz1A2GC8uJYNSMYMFNtqe2vV4JN_lJTm4EQrxyvRgon8TIJzk42j55Qw_Rt73uejOuvLPNYzZLvc5hZfJWJxP0_50Y5vohPWrey75ntAl8fRbI6ffGl6oXaZNj86yJUrvjSkUadbKnbE6lZD-9bCCgd2noXRr6NY028eVfYy_83_M34PMeWJSa8mtfMAUUaP8HmluSRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881974781</pqid></control><display><type>article</type><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</creator><creatorcontrib>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</creatorcontrib><description>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1619745114</identifier><identifier>PMID: 28265077</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aminohydrolases - antagonists &amp; inhibitors ; Aminohydrolases - genetics ; Aminohydrolases - metabolism ; Animal models ; Animals ; Arsenic ; Arsenic Trioxide ; Arsenicals ; Biological Sciences ; Biosynthesis ; Cell Line ; Cell Nucleus - drug effects ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; DNA ; Enzymes ; Fibroblasts - drug effects ; Fibroblasts - enzymology ; Fibroblasts - metabolism ; Formate-Tetrahydrofolate Ligase - antagonists &amp; inhibitors ; Formate-Tetrahydrofolate Ligase - genetics ; Formate-Tetrahydrofolate Ligase - metabolism ; Genomic Instability - drug effects ; Glycine Hydroxymethyltransferase - genetics ; Glycine Hydroxymethyltransferase - metabolism ; Humans ; Inorganic chemistry ; Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists &amp; inhibitors ; Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics ; Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism ; Mice ; Mice, Knockout ; Multienzyme Complexes - antagonists &amp; inhibitors ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Oxides - toxicity ; PNAS Plus ; Proteolysis ; Small Ubiquitin-Related Modifier Proteins - antagonists &amp; inhibitors ; Small Ubiquitin-Related Modifier Proteins - genetics ; Small Ubiquitin-Related Modifier Proteins - metabolism ; Sumoylation ; Thymidine Monophosphate - biosynthesis ; Thymidylate Synthase - genetics ; Thymidylate Synthase - metabolism ; Uracil - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2319-E2326</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</citedby><cites>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28265077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamynina, Elena</creatorcontrib><creatorcontrib>Lachenauer, Erica R.</creatorcontrib><creatorcontrib>DiRisio, Aislyn C.</creatorcontrib><creatorcontrib>Liebenthal, Rebecca P.</creatorcontrib><creatorcontrib>Field, Martha S.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</description><subject>Aminohydrolases - antagonists &amp; inhibitors</subject><subject>Aminohydrolases - genetics</subject><subject>Aminohydrolases - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arsenic</subject><subject>Arsenic Trioxide</subject><subject>Arsenicals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - enzymology</subject><subject>Fibroblasts - metabolism</subject><subject>Formate-Tetrahydrofolate Ligase - antagonists &amp; inhibitors</subject><subject>Formate-Tetrahydrofolate Ligase - genetics</subject><subject>Formate-Tetrahydrofolate Ligase - metabolism</subject><subject>Genomic Instability - drug effects</subject><subject>Glycine Hydroxymethyltransferase - genetics</subject><subject>Glycine Hydroxymethyltransferase - metabolism</subject><subject>Humans</subject><subject>Inorganic chemistry</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists &amp; inhibitors</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Multienzyme Complexes - antagonists &amp; inhibitors</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Oxides - toxicity</subject><subject>PNAS Plus</subject><subject>Proteolysis</subject><subject>Small Ubiquitin-Related Modifier Proteins - antagonists &amp; inhibitors</subject><subject>Small Ubiquitin-Related Modifier Proteins - genetics</subject><subject>Small Ubiquitin-Related Modifier Proteins - metabolism</subject><subject>Sumoylation</subject><subject>Thymidine Monophosphate - biosynthesis</subject><subject>Thymidylate Synthase - genetics</subject><subject>Thymidylate Synthase - metabolism</subject><subject>Uracil - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkc1PGzEQxa2qVUmh555aWep5Yez1114qIQqlEogDcOrB8tpe4iixU9tB5L-vo1BoLx7J85s3T_MQ-kTgmIDsT9bRlGMiyCAZJ4S9QTMCA-kEG-AtmgFQ2SlG2QH6UMoCAAau4D06oIoKDlLO0K_TXHwMFtcc0lNwHleTH3wt-Pru8uI7wSY6fHt_fdM5v_bR-Vhx3NilNxk3OKbHhOt8uwpuuzTV4zGkso117ksoR-jdZJbFf3yuh-j-4vzu7LK7uvnx8-z0qrOM9bUz1A2GC8uJYNSMYMFNtqe2vV4JN_lJTm4EQrxyvRgon8TIJzk42j55Qw_Rt73uejOuvLPNYzZLvc5hZfJWJxP0_50Y5vohPWrey75ntAl8fRbI6ffGl6oXaZNj86yJUrvjSkUadbKnbE6lZD-9bCCgd2noXRr6NY028eVfYy_83_M34PMeWJSa8mtfMAUUaP8HmluSRw</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Kamynina, Elena</creator><creator>Lachenauer, Erica R.</creator><creator>DiRisio, Aislyn C.</creator><creator>Liebenthal, Rebecca P.</creator><creator>Field, Martha S.</creator><creator>Stover, Patrick J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20170321</creationdate><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><author>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminohydrolases - antagonists &amp; inhibitors</topic><topic>Aminohydrolases - genetics</topic><topic>Aminohydrolases - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arsenic</topic><topic>Arsenic Trioxide</topic><topic>Arsenicals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - enzymology</topic><topic>Fibroblasts - metabolism</topic><topic>Formate-Tetrahydrofolate Ligase - antagonists &amp; inhibitors</topic><topic>Formate-Tetrahydrofolate Ligase - genetics</topic><topic>Formate-Tetrahydrofolate Ligase - metabolism</topic><topic>Genomic Instability - drug effects</topic><topic>Glycine Hydroxymethyltransferase - genetics</topic><topic>Glycine Hydroxymethyltransferase - metabolism</topic><topic>Humans</topic><topic>Inorganic chemistry</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists &amp; inhibitors</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Multienzyme Complexes - antagonists &amp; inhibitors</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Oxides - toxicity</topic><topic>PNAS Plus</topic><topic>Proteolysis</topic><topic>Small Ubiquitin-Related Modifier Proteins - antagonists &amp; inhibitors</topic><topic>Small Ubiquitin-Related Modifier Proteins - genetics</topic><topic>Small Ubiquitin-Related Modifier Proteins - metabolism</topic><topic>Sumoylation</topic><topic>Thymidine Monophosphate - biosynthesis</topic><topic>Thymidylate Synthase - genetics</topic><topic>Thymidylate Synthase - metabolism</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamynina, Elena</creatorcontrib><creatorcontrib>Lachenauer, Erica R.</creatorcontrib><creatorcontrib>DiRisio, Aislyn C.</creatorcontrib><creatorcontrib>Liebenthal, Rebecca P.</creatorcontrib><creatorcontrib>Field, Martha S.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamynina, Elena</au><au>Lachenauer, Erica R.</au><au>DiRisio, Aislyn C.</au><au>Liebenthal, Rebecca P.</au><au>Field, Martha S.</au><au>Stover, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>E2319</spage><epage>E2326</epage><pages>E2319-E2326</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28265077</pmid><doi>10.1073/pnas.1619745114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2319-E2326
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373342
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Aminohydrolases - antagonists & inhibitors
Aminohydrolases - genetics
Aminohydrolases - metabolism
Animal models
Animals
Arsenic
Arsenic Trioxide
Arsenicals
Biological Sciences
Biosynthesis
Cell Line
Cell Nucleus - drug effects
Cell Nucleus - enzymology
Cell Nucleus - genetics
Cell Nucleus - metabolism
Deoxyribonucleic acid
DNA
Enzymes
Fibroblasts - drug effects
Fibroblasts - enzymology
Fibroblasts - metabolism
Formate-Tetrahydrofolate Ligase - antagonists & inhibitors
Formate-Tetrahydrofolate Ligase - genetics
Formate-Tetrahydrofolate Ligase - metabolism
Genomic Instability - drug effects
Glycine Hydroxymethyltransferase - genetics
Glycine Hydroxymethyltransferase - metabolism
Humans
Inorganic chemistry
Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists & inhibitors
Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics
Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism
Mice
Mice, Knockout
Multienzyme Complexes - antagonists & inhibitors
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Oxides - toxicity
PNAS Plus
Proteolysis
Small Ubiquitin-Related Modifier Proteins - antagonists & inhibitors
Small Ubiquitin-Related Modifier Proteins - genetics
Small Ubiquitin-Related Modifier Proteins - metabolism
Sumoylation
Thymidine Monophosphate - biosynthesis
Thymidylate Synthase - genetics
Thymidylate Synthase - metabolism
Uracil - metabolism
title Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20trioxide%20targets%20MTHFD1%20and%20SUMO-dependent%20nuclear%20de%20novo%20thymidylate%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kamynina,%20Elena&rft.date=2017-03-21&rft.volume=114&rft.issue=12&rft.spage=E2319&rft.epage=E2326&rft.pages=E2319-E2326&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1619745114&rft_dat=%3Cjstor_pubme%3E26480202%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881974781&rft_id=info:pmid/28265077&rft_jstor_id=26480202&rfr_iscdi=true