Loading…
Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis
Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation i...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-03, Vol.114 (12), p.E2319-E2326 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3 |
container_end_page | E2326 |
container_issue | 12 |
container_start_page | E2319 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Kamynina, Elena Lachenauer, Erica R. DiRisio, Aislyn C. Liebenthal, Rebecca P. Field, Martha S. Stover, Patrick J. |
description | Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies. |
doi_str_mv | 10.1073/pnas.1619745114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480202</jstor_id><sourcerecordid>26480202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</originalsourceid><addsrcrecordid>eNpVkc1PGzEQxa2qVUmh555aWep5Yez1114qIQqlEogDcOrB8tpe4iixU9tB5L-vo1BoLx7J85s3T_MQ-kTgmIDsT9bRlGMiyCAZJ4S9QTMCA-kEG-AtmgFQ2SlG2QH6UMoCAAau4D06oIoKDlLO0K_TXHwMFtcc0lNwHleTH3wt-Pru8uI7wSY6fHt_fdM5v_bR-Vhx3NilNxk3OKbHhOt8uwpuuzTV4zGkso117ksoR-jdZJbFf3yuh-j-4vzu7LK7uvnx8-z0qrOM9bUz1A2GC8uJYNSMYMFNtqe2vV4JN_lJTm4EQrxyvRgon8TIJzk42j55Qw_Rt73uejOuvLPNYzZLvc5hZfJWJxP0_50Y5vohPWrey75ntAl8fRbI6ffGl6oXaZNj86yJUrvjSkUadbKnbE6lZD-9bCCgd2noXRr6NY028eVfYy_83_M34PMeWJSa8mtfMAUUaP8HmluSRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881974781</pqid></control><display><type>article</type><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</creator><creatorcontrib>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</creatorcontrib><description>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1619745114</identifier><identifier>PMID: 28265077</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aminohydrolases - antagonists & inhibitors ; Aminohydrolases - genetics ; Aminohydrolases - metabolism ; Animal models ; Animals ; Arsenic ; Arsenic Trioxide ; Arsenicals ; Biological Sciences ; Biosynthesis ; Cell Line ; Cell Nucleus - drug effects ; Cell Nucleus - enzymology ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Deoxyribonucleic acid ; DNA ; Enzymes ; Fibroblasts - drug effects ; Fibroblasts - enzymology ; Fibroblasts - metabolism ; Formate-Tetrahydrofolate Ligase - antagonists & inhibitors ; Formate-Tetrahydrofolate Ligase - genetics ; Formate-Tetrahydrofolate Ligase - metabolism ; Genomic Instability - drug effects ; Glycine Hydroxymethyltransferase - genetics ; Glycine Hydroxymethyltransferase - metabolism ; Humans ; Inorganic chemistry ; Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists & inhibitors ; Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics ; Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism ; Mice ; Mice, Knockout ; Multienzyme Complexes - antagonists & inhibitors ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Oxides - toxicity ; PNAS Plus ; Proteolysis ; Small Ubiquitin-Related Modifier Proteins - antagonists & inhibitors ; Small Ubiquitin-Related Modifier Proteins - genetics ; Small Ubiquitin-Related Modifier Proteins - metabolism ; Sumoylation ; Thymidine Monophosphate - biosynthesis ; Thymidylate Synthase - genetics ; Thymidylate Synthase - metabolism ; Uracil - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2319-E2326</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Mar 21, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</citedby><cites>FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480202$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480202$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28265077$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamynina, Elena</creatorcontrib><creatorcontrib>Lachenauer, Erica R.</creatorcontrib><creatorcontrib>DiRisio, Aislyn C.</creatorcontrib><creatorcontrib>Liebenthal, Rebecca P.</creatorcontrib><creatorcontrib>Field, Martha S.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</description><subject>Aminohydrolases - antagonists & inhibitors</subject><subject>Aminohydrolases - genetics</subject><subject>Aminohydrolases - metabolism</subject><subject>Animal models</subject><subject>Animals</subject><subject>Arsenic</subject><subject>Arsenic Trioxide</subject><subject>Arsenicals</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cell Line</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - enzymology</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - enzymology</subject><subject>Fibroblasts - metabolism</subject><subject>Formate-Tetrahydrofolate Ligase - antagonists & inhibitors</subject><subject>Formate-Tetrahydrofolate Ligase - genetics</subject><subject>Formate-Tetrahydrofolate Ligase - metabolism</subject><subject>Genomic Instability - drug effects</subject><subject>Glycine Hydroxymethyltransferase - genetics</subject><subject>Glycine Hydroxymethyltransferase - metabolism</subject><subject>Humans</subject><subject>Inorganic chemistry</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists & inhibitors</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</subject><subject>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Multienzyme Complexes - antagonists & inhibitors</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Oxides - toxicity</subject><subject>PNAS Plus</subject><subject>Proteolysis</subject><subject>Small Ubiquitin-Related Modifier Proteins - antagonists & inhibitors</subject><subject>Small Ubiquitin-Related Modifier Proteins - genetics</subject><subject>Small Ubiquitin-Related Modifier Proteins - metabolism</subject><subject>Sumoylation</subject><subject>Thymidine Monophosphate - biosynthesis</subject><subject>Thymidylate Synthase - genetics</subject><subject>Thymidylate Synthase - metabolism</subject><subject>Uracil - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkc1PGzEQxa2qVUmh555aWep5Yez1114qIQqlEogDcOrB8tpe4iixU9tB5L-vo1BoLx7J85s3T_MQ-kTgmIDsT9bRlGMiyCAZJ4S9QTMCA-kEG-AtmgFQ2SlG2QH6UMoCAAau4D06oIoKDlLO0K_TXHwMFtcc0lNwHleTH3wt-Pru8uI7wSY6fHt_fdM5v_bR-Vhx3NilNxk3OKbHhOt8uwpuuzTV4zGkso117ksoR-jdZJbFf3yuh-j-4vzu7LK7uvnx8-z0qrOM9bUz1A2GC8uJYNSMYMFNtqe2vV4JN_lJTm4EQrxyvRgon8TIJzk42j55Qw_Rt73uejOuvLPNYzZLvc5hZfJWJxP0_50Y5vohPWrey75ntAl8fRbI6ffGl6oXaZNj86yJUrvjSkUadbKnbE6lZD-9bCCgd2noXRr6NY028eVfYy_83_M34PMeWJSa8mtfMAUUaP8HmluSRw</recordid><startdate>20170321</startdate><enddate>20170321</enddate><creator>Kamynina, Elena</creator><creator>Lachenauer, Erica R.</creator><creator>DiRisio, Aislyn C.</creator><creator>Liebenthal, Rebecca P.</creator><creator>Field, Martha S.</creator><creator>Stover, Patrick J.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20170321</creationdate><title>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</title><author>Kamynina, Elena ; Lachenauer, Erica R. ; DiRisio, Aislyn C. ; Liebenthal, Rebecca P. ; Field, Martha S. ; Stover, Patrick J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminohydrolases - antagonists & inhibitors</topic><topic>Aminohydrolases - genetics</topic><topic>Aminohydrolases - metabolism</topic><topic>Animal models</topic><topic>Animals</topic><topic>Arsenic</topic><topic>Arsenic Trioxide</topic><topic>Arsenicals</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cell Line</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - enzymology</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - enzymology</topic><topic>Fibroblasts - metabolism</topic><topic>Formate-Tetrahydrofolate Ligase - antagonists & inhibitors</topic><topic>Formate-Tetrahydrofolate Ligase - genetics</topic><topic>Formate-Tetrahydrofolate Ligase - metabolism</topic><topic>Genomic Instability - drug effects</topic><topic>Glycine Hydroxymethyltransferase - genetics</topic><topic>Glycine Hydroxymethyltransferase - metabolism</topic><topic>Humans</topic><topic>Inorganic chemistry</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists & inhibitors</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics</topic><topic>Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Multienzyme Complexes - antagonists & inhibitors</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Oxides - toxicity</topic><topic>PNAS Plus</topic><topic>Proteolysis</topic><topic>Small Ubiquitin-Related Modifier Proteins - antagonists & inhibitors</topic><topic>Small Ubiquitin-Related Modifier Proteins - genetics</topic><topic>Small Ubiquitin-Related Modifier Proteins - metabolism</topic><topic>Sumoylation</topic><topic>Thymidine Monophosphate - biosynthesis</topic><topic>Thymidylate Synthase - genetics</topic><topic>Thymidylate Synthase - metabolism</topic><topic>Uracil - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamynina, Elena</creatorcontrib><creatorcontrib>Lachenauer, Erica R.</creatorcontrib><creatorcontrib>DiRisio, Aislyn C.</creatorcontrib><creatorcontrib>Liebenthal, Rebecca P.</creatorcontrib><creatorcontrib>Field, Martha S.</creatorcontrib><creatorcontrib>Stover, Patrick J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamynina, Elena</au><au>Lachenauer, Erica R.</au><au>DiRisio, Aislyn C.</au><au>Liebenthal, Rebecca P.</au><au>Field, Martha S.</au><au>Stover, Patrick J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-03-21</date><risdate>2017</risdate><volume>114</volume><issue>12</issue><spage>E2319</spage><epage>E2326</epage><pages>E2319-E2326</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Arsenic exposure increases risk for cancers and is teratogenic in animal models. Here we demonstrate that small ubiquitin-like modifier (SUMO)- and folate-dependent nuclear de novo thymidylate (dTMP) biosynthesis is a sensitive target of arsenic trioxide (As₂O₃), leading to uracil misincorporation into DNA and genome instability. Methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) and serine hydroxymethyltransferase (SHMT) generate 5,10-methylenetetrahydrofolate for de novo dTMP biosynthesis and translocate to the nucleus during S-phase, where they form a multienzyme complex with thymidylate synthase (TYMS) and dihydrofolate reductase (DHFR), as well as the components of the DNA replication machinery. As₂O₃ exposure increased MTHFD1 SUMOylation in cultured cells and in in vitro SUMOylation reactions, and increased MTHFD1 ubiquitination and MTHFD1 and SHMT1 degradation. As₂O₃ inhibited de novo dTMP biosynthesis in a dose-dependent manner, increased uracil levels in nuclear DNA, and increased genome instability. These results demonstrate that MTHFD1 and SHMT1, which are key enzymes providing one-carbon units for dTMP biosynthesis in the form of 5,10-methylenetetrahydrofolate, are direct targets of As₂O₃-induced proteolytic degradation, providing a mechanism for arsenic in the etiology of cancer and developmental anomalies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28265077</pmid><doi>10.1073/pnas.1619745114</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-03, Vol.114 (12), p.E2319-E2326 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5373342 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Aminohydrolases - antagonists & inhibitors Aminohydrolases - genetics Aminohydrolases - metabolism Animal models Animals Arsenic Arsenic Trioxide Arsenicals Biological Sciences Biosynthesis Cell Line Cell Nucleus - drug effects Cell Nucleus - enzymology Cell Nucleus - genetics Cell Nucleus - metabolism Deoxyribonucleic acid DNA Enzymes Fibroblasts - drug effects Fibroblasts - enzymology Fibroblasts - metabolism Formate-Tetrahydrofolate Ligase - antagonists & inhibitors Formate-Tetrahydrofolate Ligase - genetics Formate-Tetrahydrofolate Ligase - metabolism Genomic Instability - drug effects Glycine Hydroxymethyltransferase - genetics Glycine Hydroxymethyltransferase - metabolism Humans Inorganic chemistry Methylenetetrahydrofolate Dehydrogenase (NADP) - antagonists & inhibitors Methylenetetrahydrofolate Dehydrogenase (NADP) - genetics Methylenetetrahydrofolate Dehydrogenase (NADP) - metabolism Mice Mice, Knockout Multienzyme Complexes - antagonists & inhibitors Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Oxides - toxicity PNAS Plus Proteolysis Small Ubiquitin-Related Modifier Proteins - antagonists & inhibitors Small Ubiquitin-Related Modifier Proteins - genetics Small Ubiquitin-Related Modifier Proteins - metabolism Sumoylation Thymidine Monophosphate - biosynthesis Thymidylate Synthase - genetics Thymidylate Synthase - metabolism Uracil - metabolism |
title | Arsenic trioxide targets MTHFD1 and SUMO-dependent nuclear de novo thymidylate biosynthesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arsenic%20trioxide%20targets%20MTHFD1%20and%20SUMO-dependent%20nuclear%20de%20novo%20thymidylate%20biosynthesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kamynina,%20Elena&rft.date=2017-03-21&rft.volume=114&rft.issue=12&rft.spage=E2319&rft.epage=E2326&rft.pages=E2319-E2326&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1619745114&rft_dat=%3Cjstor_pubme%3E26480202%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-a2d9a56c51642ab0c0dfc32cdfce86dfef7fdb011e8d36925f6b5f79d2b015fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1881974781&rft_id=info:pmid/28265077&rft_jstor_id=26480202&rfr_iscdi=true |