Loading…

Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression

The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant vir...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2017-04, Vol.91 (8)
Main Authors: Selhorst, Philippe, Combrinck, Carina, Ndabambi, Nonkululeko, Ismail, Sherazaan D, Abrahams, Melissa-Rose, Lacerda, Miguel, Samsunder, Natasha, Garrett, Nigel, Abdool Karim, Quarraisha, Abdool Karim, Salim S, Williamson, Carolyn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman = 0.346; = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; = 0.004) or protective HLA alleles (HR = 0.61; = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene drives this correlation, highlighting the importance of other genes in determining disease progression.
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.01806-16