Loading…
Plant Cells Use Auxin Efflux to Explore Geometry
Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been d...
Saved in:
Published in: | Scientific reports 2014-07, Vol.4 (1), p.5852-5852 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23 |
container_end_page | 5852 |
container_issue | 1 |
container_start_page | 5852 |
container_title | Scientific reports |
container_volume | 4 |
creator | Zaban, Beatrix Liu, Wenwen Jiang, Xingyu Nick, Peter |
description | Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions. |
doi_str_mv | 10.1038/srep05852 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1549632582</sourcerecordid><originalsourceid>FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</originalsourceid><addsrcrecordid>eNpdUV1LwzAUDYK4MffgH5CCLyJU89G0yYswxpzCQB_cc0jTZHa0TU1a2f79MjbH9L7ch3M495x7ALhB8BFBwp680y2kjOILMMQwoTEmGA_A2Ps1DEMxTxC_AgNMYcowTYYAflSy6aKpriofLb2OJv2mbKKZMVW_iTobzTZtZZ2O5trWunPba3BpZOX1-LhHYPky-5y-xov3-dt0sohbTHkXJ0QjqjghOaYkZ4Ybro1SJjOqQBmTUuWKBHO0gAqq1LAC5plCXGaFKnSByQg8H3TbPq91oXTTOVmJ1pW1dFthZSn-Ik35JVb2R1CSpShNgsD9UcDZ7177TtSlVyGnbLTtvUA04SnBlO1v3f2jrm3vmhBPIMYZooSHFCNwe-7oZOX3mYHwcCD4ADUr7c5koNgXJE4FkR2maIMF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898153925</pqid></control><display><type>article</type><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</creator><creatorcontrib>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</creatorcontrib><description>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep05852</identifier><identifier>PMID: 25068254</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/62 ; 631/449/448/2652 ; 631/61/350/877 ; 631/80 ; Biological Transport - drug effects ; Cell Wall - chemistry ; Cell walls ; Exploration ; Geometry ; Humanities and Social Sciences ; Indoleacetic Acids - antagonists & inhibitors ; Indoleacetic Acids - pharmacology ; Mechanotransduction, Cellular ; Microfluidic Analytical Techniques ; Microfluidics ; Morphogenesis ; multidisciplinary ; Nicotiana - anatomy & histology ; Nicotiana - cytology ; Nicotiana - drug effects ; Nicotiana - metabolism ; Phthalimides - pharmacology ; Plant cells ; Plant Cells - drug effects ; Plant Cells - metabolism ; Plant Cells - ultrastructure ; Plant Growth Regulators - antagonists & inhibitors ; Plant Growth Regulators - pharmacology ; Plant hormones ; Science ; Stress, Mechanical</subject><ispartof>Scientific reports, 2014-07, Vol.4 (1), p.5852-5852</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898153925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898153925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25068254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaban, Beatrix</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Nick, Peter</creatorcontrib><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</description><subject>13</subject><subject>13/62</subject><subject>631/449/448/2652</subject><subject>631/61/350/877</subject><subject>631/80</subject><subject>Biological Transport - drug effects</subject><subject>Cell Wall - chemistry</subject><subject>Cell walls</subject><subject>Exploration</subject><subject>Geometry</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic Acids - antagonists & inhibitors</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Mechanotransduction, Cellular</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Nicotiana - anatomy & histology</subject><subject>Nicotiana - cytology</subject><subject>Nicotiana - drug effects</subject><subject>Nicotiana - metabolism</subject><subject>Phthalimides - pharmacology</subject><subject>Plant cells</subject><subject>Plant Cells - drug effects</subject><subject>Plant Cells - metabolism</subject><subject>Plant Cells - ultrastructure</subject><subject>Plant Growth Regulators - antagonists & inhibitors</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant hormones</subject><subject>Science</subject><subject>Stress, Mechanical</subject><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUV1LwzAUDYK4MffgH5CCLyJU89G0yYswxpzCQB_cc0jTZHa0TU1a2f79MjbH9L7ch3M495x7ALhB8BFBwp680y2kjOILMMQwoTEmGA_A2Ps1DEMxTxC_AgNMYcowTYYAflSy6aKpriofLb2OJv2mbKKZMVW_iTobzTZtZZ2O5trWunPba3BpZOX1-LhHYPky-5y-xov3-dt0sohbTHkXJ0QjqjghOaYkZ4Ybro1SJjOqQBmTUuWKBHO0gAqq1LAC5plCXGaFKnSByQg8H3TbPq91oXTTOVmJ1pW1dFthZSn-Ik35JVb2R1CSpShNgsD9UcDZ7177TtSlVyGnbLTtvUA04SnBlO1v3f2jrm3vmhBPIMYZooSHFCNwe-7oZOX3mYHwcCD4ADUr7c5koNgXJE4FkR2maIMF</recordid><startdate>20140728</startdate><enddate>20140728</enddate><creator>Zaban, Beatrix</creator><creator>Liu, Wenwen</creator><creator>Jiang, Xingyu</creator><creator>Nick, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140728</creationdate><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><author>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>13/62</topic><topic>631/449/448/2652</topic><topic>631/61/350/877</topic><topic>631/80</topic><topic>Biological Transport - drug effects</topic><topic>Cell Wall - chemistry</topic><topic>Cell walls</topic><topic>Exploration</topic><topic>Geometry</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic Acids - antagonists & inhibitors</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Mechanotransduction, Cellular</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Nicotiana - anatomy & histology</topic><topic>Nicotiana - cytology</topic><topic>Nicotiana - drug effects</topic><topic>Nicotiana - metabolism</topic><topic>Phthalimides - pharmacology</topic><topic>Plant cells</topic><topic>Plant Cells - drug effects</topic><topic>Plant Cells - metabolism</topic><topic>Plant Cells - ultrastructure</topic><topic>Plant Growth Regulators - antagonists & inhibitors</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant hormones</topic><topic>Science</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaban, Beatrix</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Nick, Peter</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaban, Beatrix</au><au>Liu, Wenwen</au><au>Jiang, Xingyu</au><au>Nick, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant Cells Use Auxin Efflux to Explore Geometry</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-07-28</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>5852</spage><epage>5852</epage><pages>5852-5852</pages><eissn>2045-2322</eissn><abstract>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25068254</pmid><doi>10.1038/srep05852</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2045-2322 |
ispartof | Scientific reports, 2014-07, Vol.4 (1), p.5852-5852 |
issn | 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376164 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 13 13/62 631/449/448/2652 631/61/350/877 631/80 Biological Transport - drug effects Cell Wall - chemistry Cell walls Exploration Geometry Humanities and Social Sciences Indoleacetic Acids - antagonists & inhibitors Indoleacetic Acids - pharmacology Mechanotransduction, Cellular Microfluidic Analytical Techniques Microfluidics Morphogenesis multidisciplinary Nicotiana - anatomy & histology Nicotiana - cytology Nicotiana - drug effects Nicotiana - metabolism Phthalimides - pharmacology Plant cells Plant Cells - drug effects Plant Cells - metabolism Plant Cells - ultrastructure Plant Growth Regulators - antagonists & inhibitors Plant Growth Regulators - pharmacology Plant hormones Science Stress, Mechanical |
title | Plant Cells Use Auxin Efflux to Explore Geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20Cells%20Use%20Auxin%20Efflux%20to%20Explore%20Geometry&rft.jtitle=Scientific%20reports&rft.au=Zaban,%20Beatrix&rft.date=2014-07-28&rft.volume=4&rft.issue=1&rft.spage=5852&rft.epage=5852&rft.pages=5852-5852&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep05852&rft_dat=%3Cproquest_pubme%3E1549632582%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898153925&rft_id=info:pmid/25068254&rfr_iscdi=true |