Loading…

Plant Cells Use Auxin Efflux to Explore Geometry

Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been d...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2014-07, Vol.4 (1), p.5852-5852
Main Authors: Zaban, Beatrix, Liu, Wenwen, Jiang, Xingyu, Nick, Peter
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23
container_end_page 5852
container_issue 1
container_start_page 5852
container_title Scientific reports
container_volume 4
creator Zaban, Beatrix
Liu, Wenwen
Jiang, Xingyu
Nick, Peter
description Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.
doi_str_mv 10.1038/srep05852
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1549632582</sourcerecordid><originalsourceid>FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</originalsourceid><addsrcrecordid>eNpdUV1LwzAUDYK4MffgH5CCLyJU89G0yYswxpzCQB_cc0jTZHa0TU1a2f79MjbH9L7ch3M495x7ALhB8BFBwp680y2kjOILMMQwoTEmGA_A2Ps1DEMxTxC_AgNMYcowTYYAflSy6aKpriofLb2OJv2mbKKZMVW_iTobzTZtZZ2O5trWunPba3BpZOX1-LhHYPky-5y-xov3-dt0sohbTHkXJ0QjqjghOaYkZ4Ybro1SJjOqQBmTUuWKBHO0gAqq1LAC5plCXGaFKnSByQg8H3TbPq91oXTTOVmJ1pW1dFthZSn-Ik35JVb2R1CSpShNgsD9UcDZ7177TtSlVyGnbLTtvUA04SnBlO1v3f2jrm3vmhBPIMYZooSHFCNwe-7oZOX3mYHwcCD4ADUr7c5koNgXJE4FkR2maIMF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1898153925</pqid></control><display><type>article</type><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</creator><creatorcontrib>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</creatorcontrib><description>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</description><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/srep05852</identifier><identifier>PMID: 25068254</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13 ; 13/62 ; 631/449/448/2652 ; 631/61/350/877 ; 631/80 ; Biological Transport - drug effects ; Cell Wall - chemistry ; Cell walls ; Exploration ; Geometry ; Humanities and Social Sciences ; Indoleacetic Acids - antagonists &amp; inhibitors ; Indoleacetic Acids - pharmacology ; Mechanotransduction, Cellular ; Microfluidic Analytical Techniques ; Microfluidics ; Morphogenesis ; multidisciplinary ; Nicotiana - anatomy &amp; histology ; Nicotiana - cytology ; Nicotiana - drug effects ; Nicotiana - metabolism ; Phthalimides - pharmacology ; Plant cells ; Plant Cells - drug effects ; Plant Cells - metabolism ; Plant Cells - ultrastructure ; Plant Growth Regulators - antagonists &amp; inhibitors ; Plant Growth Regulators - pharmacology ; Plant hormones ; Science ; Stress, Mechanical</subject><ispartof>Scientific reports, 2014-07, Vol.4 (1), p.5852-5852</ispartof><rights>The Author(s) 2014</rights><rights>Copyright Nature Publishing Group Jul 2014</rights><rights>Copyright © 2014, Macmillan Publishers Limited. All rights reserved 2014 Macmillan Publishers Limited. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1898153925/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1898153925?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25068254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zaban, Beatrix</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Nick, Peter</creatorcontrib><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</description><subject>13</subject><subject>13/62</subject><subject>631/449/448/2652</subject><subject>631/61/350/877</subject><subject>631/80</subject><subject>Biological Transport - drug effects</subject><subject>Cell Wall - chemistry</subject><subject>Cell walls</subject><subject>Exploration</subject><subject>Geometry</subject><subject>Humanities and Social Sciences</subject><subject>Indoleacetic Acids - antagonists &amp; inhibitors</subject><subject>Indoleacetic Acids - pharmacology</subject><subject>Mechanotransduction, Cellular</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microfluidics</subject><subject>Morphogenesis</subject><subject>multidisciplinary</subject><subject>Nicotiana - anatomy &amp; histology</subject><subject>Nicotiana - cytology</subject><subject>Nicotiana - drug effects</subject><subject>Nicotiana - metabolism</subject><subject>Phthalimides - pharmacology</subject><subject>Plant cells</subject><subject>Plant Cells - drug effects</subject><subject>Plant Cells - metabolism</subject><subject>Plant Cells - ultrastructure</subject><subject>Plant Growth Regulators - antagonists &amp; inhibitors</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant hormones</subject><subject>Science</subject><subject>Stress, Mechanical</subject><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdUV1LwzAUDYK4MffgH5CCLyJU89G0yYswxpzCQB_cc0jTZHa0TU1a2f79MjbH9L7ch3M495x7ALhB8BFBwp680y2kjOILMMQwoTEmGA_A2Ps1DEMxTxC_AgNMYcowTYYAflSy6aKpriofLb2OJv2mbKKZMVW_iTobzTZtZZ2O5trWunPba3BpZOX1-LhHYPky-5y-xov3-dt0sohbTHkXJ0QjqjghOaYkZ4Ybro1SJjOqQBmTUuWKBHO0gAqq1LAC5plCXGaFKnSByQg8H3TbPq91oXTTOVmJ1pW1dFthZSn-Ik35JVb2R1CSpShNgsD9UcDZ7177TtSlVyGnbLTtvUA04SnBlO1v3f2jrm3vmhBPIMYZooSHFCNwe-7oZOX3mYHwcCD4ADUr7c5koNgXJE4FkR2maIMF</recordid><startdate>20140728</startdate><enddate>20140728</enddate><creator>Zaban, Beatrix</creator><creator>Liu, Wenwen</creator><creator>Jiang, Xingyu</creator><creator>Nick, Peter</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140728</creationdate><title>Plant Cells Use Auxin Efflux to Explore Geometry</title><author>Zaban, Beatrix ; Liu, Wenwen ; Jiang, Xingyu ; Nick, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>13/62</topic><topic>631/449/448/2652</topic><topic>631/61/350/877</topic><topic>631/80</topic><topic>Biological Transport - drug effects</topic><topic>Cell Wall - chemistry</topic><topic>Cell walls</topic><topic>Exploration</topic><topic>Geometry</topic><topic>Humanities and Social Sciences</topic><topic>Indoleacetic Acids - antagonists &amp; inhibitors</topic><topic>Indoleacetic Acids - pharmacology</topic><topic>Mechanotransduction, Cellular</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microfluidics</topic><topic>Morphogenesis</topic><topic>multidisciplinary</topic><topic>Nicotiana - anatomy &amp; histology</topic><topic>Nicotiana - cytology</topic><topic>Nicotiana - drug effects</topic><topic>Nicotiana - metabolism</topic><topic>Phthalimides - pharmacology</topic><topic>Plant cells</topic><topic>Plant Cells - drug effects</topic><topic>Plant Cells - metabolism</topic><topic>Plant Cells - ultrastructure</topic><topic>Plant Growth Regulators - antagonists &amp; inhibitors</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant hormones</topic><topic>Science</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaban, Beatrix</creatorcontrib><creatorcontrib>Liu, Wenwen</creatorcontrib><creatorcontrib>Jiang, Xingyu</creatorcontrib><creatorcontrib>Nick, Peter</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaban, Beatrix</au><au>Liu, Wenwen</au><au>Jiang, Xingyu</au><au>Nick, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant Cells Use Auxin Efflux to Explore Geometry</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2014-07-28</date><risdate>2014</risdate><volume>4</volume><issue>1</issue><spage>5852</spage><epage>5852</epage><pages>5852-5852</pages><eissn>2045-2322</eissn><abstract>Cell movement is the central mechanism for animal morphogenesis. Plant cell development rather relies on flexible alignment of cell axis adjusting cellular differentiation to directional cues. As central input, vectorial fields of mechanical stress and gradients of the phytohormone auxin have been discussed. In tissue contexts, mechanical and chemical signals will always act in concert; experimentally it is difficult to dissect their individual roles. We have designed a novel approach, based on cells, where directionality has been eliminated by removal of the cell wall. We impose a new axis using a microfluidic set-up to generate auxin gradients. Rectangular microvessels are integrated orthogonally with the gradient. Cells in these microvessels align their new axis with microvessel geometry before touching the wall. Auxin efflux is necessary for this touch-independent geometry exploration and we suggest a model, where auxin gradients can be used to align cell axis in tissues with minimized mechanical tensions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25068254</pmid><doi>10.1038/srep05852</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2014-07, Vol.4 (1), p.5852-5852
issn 2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5376164
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 13
13/62
631/449/448/2652
631/61/350/877
631/80
Biological Transport - drug effects
Cell Wall - chemistry
Cell walls
Exploration
Geometry
Humanities and Social Sciences
Indoleacetic Acids - antagonists & inhibitors
Indoleacetic Acids - pharmacology
Mechanotransduction, Cellular
Microfluidic Analytical Techniques
Microfluidics
Morphogenesis
multidisciplinary
Nicotiana - anatomy & histology
Nicotiana - cytology
Nicotiana - drug effects
Nicotiana - metabolism
Phthalimides - pharmacology
Plant cells
Plant Cells - drug effects
Plant Cells - metabolism
Plant Cells - ultrastructure
Plant Growth Regulators - antagonists & inhibitors
Plant Growth Regulators - pharmacology
Plant hormones
Science
Stress, Mechanical
title Plant Cells Use Auxin Efflux to Explore Geometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant%20Cells%20Use%20Auxin%20Efflux%20to%20Explore%20Geometry&rft.jtitle=Scientific%20reports&rft.au=Zaban,%20Beatrix&rft.date=2014-07-28&rft.volume=4&rft.issue=1&rft.spage=5852&rft.epage=5852&rft.pages=5852-5852&rft.eissn=2045-2322&rft_id=info:doi/10.1038/srep05852&rft_dat=%3Cproquest_pubme%3E1549632582%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p259t-43e15c933b253b8f9f9efccf7fcd178aacbc33225d0c0c6f8d0b7c19a7dcded23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1898153925&rft_id=info:pmid/25068254&rfr_iscdi=true