Loading…
Concurrent production of cellulase and xylanase from Trichoderma reesei NCIM 1186: enhancement of production by desirability-based multi-objective method
Application of multiple response optimizations using desirability function in the production of microbial metabolites improves economy and efficiency. Concurrent production of cellulase and xylanase in Trichoderma reesei NCIM 1186 using an agricultural weed, Prosopis juliflora pods, was studied. The...
Saved in:
Published in: | 3 Biotech 2017-05, Vol.7 (1), p.14-13, Article 14 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Application of multiple response optimizations using desirability function in the production of microbial metabolites improves economy and efficiency. Concurrent production of cellulase and xylanase in
Trichoderma reesei
NCIM 1186 using an agricultural weed,
Prosopis juliflora
pods, was studied. The main aim of the study was to optimize significant medium nutrient parameters for maximization of cellulase and xylanase by multi-objective optimization strategy using biomass. Process parameters such as the nutrient concentrations (pods, sucrose, and yeast extract) and pH were investigated to improve cellulase and xylanase activities by one factor at a time approach, single response optimization and multi-objective optimization. At the corresponding optimized process parameters in single response optimization, the maximum cellulase activity observed was 3055.65 U/L where xylanase highest activity was 422.16 U/L. Similarly, the maximum xylanase activity, 444.94 U/L, was observed with the highest cellulase activity of 2804.40 U/L. The multi-objective optimization finds a tradeoff between the two objectives and optimal activity values in between the single-objective optima were achieved, 3033.74 and 439.13 U/L for cellulase and xylanase, respectively. |
---|---|
ISSN: | 2190-572X 2190-5738 |
DOI: | 10.1007/s13205-017-0607-y |