Loading…
Structure and Variability of the North Equatorial Current/Undercurrent from Mooring Measurements at 130°E in the Western Pacific
The mean structure and variability of the North Equatorial Current/Undercurrent (NEC/NEUC) are investigated with one-year Acoustic Doppler Current Profilers measurements from 4 subsurface moorings deployed at 10.5°N, 13°N, 15.5°N, and 18°N along 130°E in the western Pacific. The strong westward flow...
Saved in:
Published in: | Scientific reports 2017-04, Vol.7 (1), p.46310-46310, Article 46310 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mean structure and variability of the North Equatorial Current/Undercurrent (NEC/NEUC) are investigated with one-year Acoustic Doppler Current Profilers measurements from 4 subsurface moorings deployed at 10.5°N, 13°N, 15.5°N, and 18°N along 130°E in the western Pacific. The strong westward flowing NEC ranges from the sea surface down to 400 m, and the mean zonal velocity of the NEC at 10.5°N is around −30 cm/s at the depth of 70 m. Eastward flowing NEUC jets are detected below the NEC at 10.5°N and 13°N, and the depth of the NEUC could reach at least 900 m. The mean velocity of the NEUC is around 4.2 cm/s at 800 m. No eastward undercurrents are observed at 15°N and 18°N. The mooring measurements also reveal a strong intraseasonal variability of the currents at all 4 mooring sites, and the period is around 70–120 days. The vertical structure of this intraseasonal variability varies at different latitudes. The variability of the NEUC jets at 10.5°N and 13°N appears to be dominated by subthermocline signals, while the variability of the currents at 15.5°N and 18°N is dominated by surface-intensified signals. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/srep46310 |