Loading…

Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields

In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at...

Full description

Saved in:
Bibliographic Details
Published in:Electrophoresis 2017-04, Vol.38 (7), p.1022-1037
Main Authors: Sadek, Samir H., Pimenta, Francisco, Pinho, Fernando T., Alves, Manuel A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293
cites cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293
container_end_page 1037
container_issue 7
container_start_page 1022
container_title Electrophoresis
container_volume 38
creator Sadek, Samir H.
Pimenta, Francisco
Pinho, Fernando T.
Alves, Manuel A.
description In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.
doi_str_mv 10.1002/elps.201600368
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920477292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rh69SgNXrz0WPnodHIRZFk_YERBPYdMunonS7rTJt277L8348wO6kWhoKjKUy9VeQl5TmFNAdhrDFNeM6ASgEv1gKxow1jNpOIPyQpoy2tQvDkjT3K-BgChhXhMzlirNchGrMjuE9q8JBxwnKvYVxjQzSnGPMTZu8qO3X1r2sWE-94Nhuj87DFXS_bjVTUtIWP3iy31kqPvbDiOFb73GLr8lDzqbeGeHfM5-f7u8tvFh3rz-f3Hi7eb2jUSZI0SBe1Uv7Wd2FplkVrXl2BiqyjveUmCaSsksAadVj2VTvW6kQ3XrWWan5M3B91p2Q7YuXJXssFMyQ823ZlovfnzZfQ7cxVvTBGQvOVF4NVRIMUfC-bZDD47DMGOGJdsqNJcg-Yg_wNtKFNaalrQl3-h13FJY_kJQzUD0bZMs0KtD5RLMeeE_WlvCmbvt9n7bU5-l4EXv197wu8NLoA4ALc-4N0_5Mzl5stXCa3kPwEeLrmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920477292</pqid></control><display><type>article</type><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</creator><creatorcontrib>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</creatorcontrib><description>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600368</identifier><identifier>PMID: 27990654</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Channels ; Computational fluid dynamics ; Diffusion ; Diffusion rate ; Electric fields ; Electricity ; Electroosmosis - methods ; Electroosmotic mobility ; Electrophoresis ; Electrophoresis - methods ; Electrophoretic mobility ; Exact solutions ; Measurement methods ; Microchannels ; Microfluidic Analytical Techniques - methods ; Models, Theoretical ; Part III: Methodologies and Applications ; Particle Size ; Particle tracking ; Particle tracking velocimetry ; Polydimethylsiloxane ; Polystyrene resins ; Polystyrenes - chemistry ; Rheology - methods ; Temporal resolution ; Tracer particles ; Velocity measurement ; Viscoelastic fluids ; Viscoelasticity ; Zeta‐potential measurement</subject><ispartof>Electrophoresis, 2017-04, Vol.38 (7), p.1022-1037</ispartof><rights>2016 The Authors. published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</citedby><cites>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27990654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadek, Samir H.</creatorcontrib><creatorcontrib>Pimenta, Francisco</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>Alves, Manuel A.</creatorcontrib><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</description><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electroosmosis - methods</subject><subject>Electroosmotic mobility</subject><subject>Electrophoresis</subject><subject>Electrophoresis - methods</subject><subject>Electrophoretic mobility</subject><subject>Exact solutions</subject><subject>Measurement methods</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Models, Theoretical</subject><subject>Part III: Methodologies and Applications</subject><subject>Particle Size</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Polydimethylsiloxane</subject><subject>Polystyrene resins</subject><subject>Polystyrenes - chemistry</subject><subject>Rheology - methods</subject><subject>Temporal resolution</subject><subject>Tracer particles</subject><subject>Velocity measurement</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Zeta‐potential measurement</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkU2LFDEQhoMo7rh69SgNXrz0WPnodHIRZFk_YERBPYdMunonS7rTJt277L8348wO6kWhoKjKUy9VeQl5TmFNAdhrDFNeM6ASgEv1gKxow1jNpOIPyQpoy2tQvDkjT3K-BgChhXhMzlirNchGrMjuE9q8JBxwnKvYVxjQzSnGPMTZu8qO3X1r2sWE-94Nhuj87DFXS_bjVTUtIWP3iy31kqPvbDiOFb73GLr8lDzqbeGeHfM5-f7u8tvFh3rz-f3Hi7eb2jUSZI0SBe1Uv7Wd2FplkVrXl2BiqyjveUmCaSsksAadVj2VTvW6kQ3XrWWan5M3B91p2Q7YuXJXssFMyQ823ZlovfnzZfQ7cxVvTBGQvOVF4NVRIMUfC-bZDD47DMGOGJdsqNJcg-Yg_wNtKFNaalrQl3-h13FJY_kJQzUD0bZMs0KtD5RLMeeE_WlvCmbvt9n7bU5-l4EXv197wu8NLoA4ALc-4N0_5Mzl5stXCa3kPwEeLrmc</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Sadek, Samir H.</creator><creator>Pimenta, Francisco</creator><creator>Pinho, Fernando T.</creator><creator>Alves, Manuel A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201704</creationdate><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><author>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electroosmosis - methods</topic><topic>Electroosmotic mobility</topic><topic>Electrophoresis</topic><topic>Electrophoresis - methods</topic><topic>Electrophoretic mobility</topic><topic>Exact solutions</topic><topic>Measurement methods</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Models, Theoretical</topic><topic>Part III: Methodologies and Applications</topic><topic>Particle Size</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Polydimethylsiloxane</topic><topic>Polystyrene resins</topic><topic>Polystyrenes - chemistry</topic><topic>Rheology - methods</topic><topic>Temporal resolution</topic><topic>Tracer particles</topic><topic>Velocity measurement</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Zeta‐potential measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadek, Samir H.</creatorcontrib><creatorcontrib>Pimenta, Francisco</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>Alves, Manuel A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles (Open Access)</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadek, Samir H.</au><au>Pimenta, Francisco</au><au>Pinho, Fernando T.</au><au>Alves, Manuel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-04</date><risdate>2017</risdate><volume>38</volume><issue>7</issue><spage>1022</spage><epage>1037</epage><pages>1022-1037</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27990654</pmid><doi>10.1002/elps.201600368</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2017-04, Vol.38 (7), p.1022-1037
issn 0173-0835
1522-2683
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396373
source Wiley-Blackwell Read & Publish Collection
subjects Channels
Computational fluid dynamics
Diffusion
Diffusion rate
Electric fields
Electricity
Electroosmosis - methods
Electroosmotic mobility
Electrophoresis
Electrophoresis - methods
Electrophoretic mobility
Exact solutions
Measurement methods
Microchannels
Microfluidic Analytical Techniques - methods
Models, Theoretical
Part III: Methodologies and Applications
Particle Size
Particle tracking
Particle tracking velocimetry
Polydimethylsiloxane
Polystyrene resins
Polystyrenes - chemistry
Rheology - methods
Temporal resolution
Tracer particles
Velocity measurement
Viscoelastic fluids
Viscoelasticity
Zeta‐potential measurement
title Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20electroosmotic%20and%20electrophoretic%20velocities%20using%20pulsed%20and%20sinusoidal%20electric%20fields&rft.jtitle=Electrophoresis&rft.au=Sadek,%20Samir%20H.&rft.date=2017-04&rft.volume=38&rft.issue=7&rft.spage=1022&rft.epage=1037&rft.pages=1022-1037&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600368&rft_dat=%3Cproquest_pubme%3E1920477292%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920477292&rft_id=info:pmid/27990654&rfr_iscdi=true