Loading…
Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields
In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at...
Saved in:
Published in: | Electrophoresis 2017-04, Vol.38 (7), p.1022-1037 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293 |
---|---|
cites | cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293 |
container_end_page | 1037 |
container_issue | 7 |
container_start_page | 1022 |
container_title | Electrophoresis |
container_volume | 38 |
creator | Sadek, Samir H. Pimenta, Francisco Pinho, Fernando T. Alves, Manuel A. |
description | In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively. |
doi_str_mv | 10.1002/elps.201600368 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1920477292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</originalsourceid><addsrcrecordid>eNqNkU2LFDEQhoMo7rh69SgNXrz0WPnodHIRZFk_YERBPYdMunonS7rTJt277L8348wO6kWhoKjKUy9VeQl5TmFNAdhrDFNeM6ASgEv1gKxow1jNpOIPyQpoy2tQvDkjT3K-BgChhXhMzlirNchGrMjuE9q8JBxwnKvYVxjQzSnGPMTZu8qO3X1r2sWE-94Nhuj87DFXS_bjVTUtIWP3iy31kqPvbDiOFb73GLr8lDzqbeGeHfM5-f7u8tvFh3rz-f3Hi7eb2jUSZI0SBe1Uv7Wd2FplkVrXl2BiqyjveUmCaSsksAadVj2VTvW6kQ3XrWWan5M3B91p2Q7YuXJXssFMyQ823ZlovfnzZfQ7cxVvTBGQvOVF4NVRIMUfC-bZDD47DMGOGJdsqNJcg-Yg_wNtKFNaalrQl3-h13FJY_kJQzUD0bZMs0KtD5RLMeeE_WlvCmbvt9n7bU5-l4EXv197wu8NLoA4ALc-4N0_5Mzl5stXCa3kPwEeLrmc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920477292</pqid></control><display><type>article</type><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</creator><creatorcontrib>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</creatorcontrib><description>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201600368</identifier><identifier>PMID: 27990654</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Channels ; Computational fluid dynamics ; Diffusion ; Diffusion rate ; Electric fields ; Electricity ; Electroosmosis - methods ; Electroosmotic mobility ; Electrophoresis ; Electrophoresis - methods ; Electrophoretic mobility ; Exact solutions ; Measurement methods ; Microchannels ; Microfluidic Analytical Techniques - methods ; Models, Theoretical ; Part III: Methodologies and Applications ; Particle Size ; Particle tracking ; Particle tracking velocimetry ; Polydimethylsiloxane ; Polystyrene resins ; Polystyrenes - chemistry ; Rheology - methods ; Temporal resolution ; Tracer particles ; Velocity measurement ; Viscoelastic fluids ; Viscoelasticity ; Zeta‐potential measurement</subject><ispartof>Electrophoresis, 2017-04, Vol.38 (7), p.1022-1037</ispartof><rights>2016 The Authors. published by Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 The Authors. Electrophoresis published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</citedby><cites>FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27990654$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadek, Samir H.</creatorcontrib><creatorcontrib>Pimenta, Francisco</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>Alves, Manuel A.</creatorcontrib><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</description><subject>Channels</subject><subject>Computational fluid dynamics</subject><subject>Diffusion</subject><subject>Diffusion rate</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Electroosmosis - methods</subject><subject>Electroosmotic mobility</subject><subject>Electrophoresis</subject><subject>Electrophoresis - methods</subject><subject>Electrophoretic mobility</subject><subject>Exact solutions</subject><subject>Measurement methods</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Models, Theoretical</subject><subject>Part III: Methodologies and Applications</subject><subject>Particle Size</subject><subject>Particle tracking</subject><subject>Particle tracking velocimetry</subject><subject>Polydimethylsiloxane</subject><subject>Polystyrene resins</subject><subject>Polystyrenes - chemistry</subject><subject>Rheology - methods</subject><subject>Temporal resolution</subject><subject>Tracer particles</subject><subject>Velocity measurement</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><subject>Zeta‐potential measurement</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqNkU2LFDEQhoMo7rh69SgNXrz0WPnodHIRZFk_YERBPYdMunonS7rTJt277L8348wO6kWhoKjKUy9VeQl5TmFNAdhrDFNeM6ASgEv1gKxow1jNpOIPyQpoy2tQvDkjT3K-BgChhXhMzlirNchGrMjuE9q8JBxwnKvYVxjQzSnGPMTZu8qO3X1r2sWE-94Nhuj87DFXS_bjVTUtIWP3iy31kqPvbDiOFb73GLr8lDzqbeGeHfM5-f7u8tvFh3rz-f3Hi7eb2jUSZI0SBe1Uv7Wd2FplkVrXl2BiqyjveUmCaSsksAadVj2VTvW6kQ3XrWWan5M3B91p2Q7YuXJXssFMyQ823ZlovfnzZfQ7cxVvTBGQvOVF4NVRIMUfC-bZDD47DMGOGJdsqNJcg-Yg_wNtKFNaalrQl3-h13FJY_kJQzUD0bZMs0KtD5RLMeeE_WlvCmbvt9n7bU5-l4EXv197wu8NLoA4ALc-4N0_5Mzl5stXCa3kPwEeLrmc</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Sadek, Samir H.</creator><creator>Pimenta, Francisco</creator><creator>Pinho, Fernando T.</creator><creator>Alves, Manuel A.</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201704</creationdate><title>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</title><author>Sadek, Samir H. ; Pimenta, Francisco ; Pinho, Fernando T. ; Alves, Manuel A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Channels</topic><topic>Computational fluid dynamics</topic><topic>Diffusion</topic><topic>Diffusion rate</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Electroosmosis - methods</topic><topic>Electroosmotic mobility</topic><topic>Electrophoresis</topic><topic>Electrophoresis - methods</topic><topic>Electrophoretic mobility</topic><topic>Exact solutions</topic><topic>Measurement methods</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Models, Theoretical</topic><topic>Part III: Methodologies and Applications</topic><topic>Particle Size</topic><topic>Particle tracking</topic><topic>Particle tracking velocimetry</topic><topic>Polydimethylsiloxane</topic><topic>Polystyrene resins</topic><topic>Polystyrenes - chemistry</topic><topic>Rheology - methods</topic><topic>Temporal resolution</topic><topic>Tracer particles</topic><topic>Velocity measurement</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><topic>Zeta‐potential measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadek, Samir H.</creatorcontrib><creatorcontrib>Pimenta, Francisco</creatorcontrib><creatorcontrib>Pinho, Fernando T.</creatorcontrib><creatorcontrib>Alves, Manuel A.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles (Open Access)</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadek, Samir H.</au><au>Pimenta, Francisco</au><au>Pinho, Fernando T.</au><au>Alves, Manuel A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2017-04</date><risdate>2017</risdate><volume>38</volume><issue>7</issue><spage>1022</spage><epage>1037</epage><pages>1022-1037</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>In this work, we explore two methods to simultaneously measure the electroosmotic mobility in microchannels and the electrophoretic mobility of micron‐sized tracer particles. The first method is based on imposing a pulsed electric field, which allows to isolate electrophoresis and electroosmosis at the startup and shutdown of the pulse, respectively. In the second method, a sinusoidal electric field is generated and the mobilities are found by minimizing the difference between the measured velocity of tracer particles and the velocity computed from an analytical expression. Both methods produced consistent results using polydimethylsiloxane microchannels and polystyrene micro‐particles, provided that the temporal resolution of the particle tracking velocimetry technique used to compute the velocity of the tracer particles is fast enough to resolve the diffusion time‐scale based on the characteristic channel length scale. Additionally, we present results with the pulse method for viscoelastic fluids, which show a more complex transient response with significant velocity overshoots and undershoots after the start and the end of the applied electric pulse, respectively.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27990654</pmid><doi>10.1002/elps.201600368</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2017-04, Vol.38 (7), p.1022-1037 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5396373 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Channels Computational fluid dynamics Diffusion Diffusion rate Electric fields Electricity Electroosmosis - methods Electroosmotic mobility Electrophoresis Electrophoresis - methods Electrophoretic mobility Exact solutions Measurement methods Microchannels Microfluidic Analytical Techniques - methods Models, Theoretical Part III: Methodologies and Applications Particle Size Particle tracking Particle tracking velocimetry Polydimethylsiloxane Polystyrene resins Polystyrenes - chemistry Rheology - methods Temporal resolution Tracer particles Velocity measurement Viscoelastic fluids Viscoelasticity Zeta‐potential measurement |
title | Measurement of electroosmotic and electrophoretic velocities using pulsed and sinusoidal electric fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A28%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20electroosmotic%20and%20electrophoretic%20velocities%20using%20pulsed%20and%20sinusoidal%20electric%20fields&rft.jtitle=Electrophoresis&rft.au=Sadek,%20Samir%20H.&rft.date=2017-04&rft.volume=38&rft.issue=7&rft.spage=1022&rft.epage=1037&rft.pages=1022-1037&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201600368&rft_dat=%3Cproquest_pubme%3E1920477292%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5606-e6e41d8fbad4ba8ae1acfacf24b813f34b8429a46025ec98f16c8f9565397a293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1920477292&rft_id=info:pmid/27990654&rfr_iscdi=true |