Loading…

The global signal in fMRI: Nuisance or Information?

The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2017-04, Vol.150, p.213-229
Main Authors: Liu, Thomas T., Nalci, Alican, Falahpour, Maryam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13
cites cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13
container_end_page 229
container_issue
container_start_page 213
container_title NeuroImage (Orlando, Fla.)
container_volume 150
creator Liu, Thomas T.
Nalci, Alican
Falahpour, Maryam
description The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.
doi_str_mv 10.1016/j.neuroimage.2017.02.036
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917301477</els_id><sourcerecordid>1869966480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EoqXwF1AkNmwSPHb8YgGCiseV2iKhsrYc27n1Va5d7KQS_x5Ht5SWDasZyd8cn5mDUAO4Awz8za6Lfskp7M3WdwSD6DDpMOWP0DFgxVrFBHm89oy2EkAdoWel7DDGCnr5FB0RSYACyGNEL698s53SYKamhG2sJcRmPP--edtcLKGYaH2TcrOJY8p7M4cU3z9HT0YzFf_itp6gH58_XZ5-bc--fdmcfjhrLRN0boXF_WgdH_goKKOUVGu9cyCUAEUd4Y5QLq0RPQemei8ZcXIQg3QCsHBAT9C7g-71Muy9sz7O2Uz6Ote98y-dTNAPX2K40tt0o1mPOSGqCry-Fcjp5-LLrPehWD9NJvq0FA2SK8V5L3FFX_2D7tKS6zlWSjKsKGerI3mgbE6lZD_emQGs12T0Tv9NRq_JaEx0TaaOvry_zN3gnygq8PEA-HrSm-CzLjb4en4Xsrezdin8_5ff7NmiWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885093651</pqid></control><display><type>article</type><title>The global signal in fMRI: Nuisance or Information?</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</creator><creatorcontrib>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</creatorcontrib><description>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.02.036</identifier><identifier>PMID: 28213118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain Mapping - methods ; Data processing ; fMRI ; Functional magnetic resonance imaging ; General linear model ; Global signal ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Motion ; NMR ; Noise ; Nuclear magnetic resonance ; Nuisance ; Physiological noise ; Physiology ; Time series ; Vigilance</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-04, Vol.150, p.213-229</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</citedby><cites>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28213118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Thomas T.</creatorcontrib><creatorcontrib>Nalci, Alican</creatorcontrib><creatorcontrib>Falahpour, Maryam</creatorcontrib><title>The global signal in fMRI: Nuisance or Information?</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</description><subject>Brain Mapping - methods</subject><subject>Data processing</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>General linear model</subject><subject>Global signal</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Motion</subject><subject>NMR</subject><subject>Noise</subject><subject>Nuclear magnetic resonance</subject><subject>Nuisance</subject><subject>Physiological noise</subject><subject>Physiology</subject><subject>Time series</subject><subject>Vigilance</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0EoqXwF1AkNmwSPHb8YgGCiseV2iKhsrYc27n1Va5d7KQS_x5Ht5SWDasZyd8cn5mDUAO4Awz8za6Lfskp7M3WdwSD6DDpMOWP0DFgxVrFBHm89oy2EkAdoWel7DDGCnr5FB0RSYACyGNEL698s53SYKamhG2sJcRmPP--edtcLKGYaH2TcrOJY8p7M4cU3z9HT0YzFf_itp6gH58_XZ5-bc--fdmcfjhrLRN0boXF_WgdH_goKKOUVGu9cyCUAEUd4Y5QLq0RPQemei8ZcXIQg3QCsHBAT9C7g-71Muy9sz7O2Uz6Ote98y-dTNAPX2K40tt0o1mPOSGqCry-Fcjp5-LLrPehWD9NJvq0FA2SK8V5L3FFX_2D7tKS6zlWSjKsKGerI3mgbE6lZD_emQGs12T0Tv9NRq_JaEx0TaaOvry_zN3gnygq8PEA-HrSm-CzLjb4en4Xsrezdin8_5ff7NmiWg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Liu, Thomas T.</creator><creator>Nalci, Alican</creator><creator>Falahpour, Maryam</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170415</creationdate><title>The global signal in fMRI: Nuisance or Information?</title><author>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain Mapping - methods</topic><topic>Data processing</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>General linear model</topic><topic>Global signal</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Motion</topic><topic>NMR</topic><topic>Noise</topic><topic>Nuclear magnetic resonance</topic><topic>Nuisance</topic><topic>Physiological noise</topic><topic>Physiology</topic><topic>Time series</topic><topic>Vigilance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Thomas T.</creatorcontrib><creatorcontrib>Nalci, Alican</creatorcontrib><creatorcontrib>Falahpour, Maryam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Thomas T.</au><au>Nalci, Alican</au><au>Falahpour, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global signal in fMRI: Nuisance or Information?</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-04-15</date><risdate>2017</risdate><volume>150</volume><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28213118</pmid><doi>10.1016/j.neuroimage.2017.02.036</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2017-04, Vol.150, p.213-229
issn 1053-8119
1095-9572
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406229
source ScienceDirect Freedom Collection 2022-2024
subjects Brain Mapping - methods
Data processing
fMRI
Functional magnetic resonance imaging
General linear model
Global signal
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Motion
NMR
Noise
Nuclear magnetic resonance
Nuisance
Physiological noise
Physiology
Time series
Vigilance
title The global signal in fMRI: Nuisance or Information?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20signal%20in%20fMRI:%20Nuisance%20or%20Information?&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Liu,%20Thomas%20T.&rft.date=2017-04-15&rft.volume=150&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.02.036&rft_dat=%3Cproquest_pubme%3E1869966480%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1885093651&rft_id=info:pmid/28213118&rfr_iscdi=true