Loading…
The global signal in fMRI: Nuisance or Information?
The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2017-04, Vol.150, p.213-229 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13 |
container_end_page | 229 |
container_issue | |
container_start_page | 213 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 150 |
creator | Liu, Thomas T. Nalci, Alican Falahpour, Maryam |
description | The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches. |
doi_str_mv | 10.1016/j.neuroimage.2017.02.036 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917301477</els_id><sourcerecordid>1869966480</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EoqXwF1AkNmwSPHb8YgGCiseV2iKhsrYc27n1Va5d7KQS_x5Ht5SWDasZyd8cn5mDUAO4Awz8za6Lfskp7M3WdwSD6DDpMOWP0DFgxVrFBHm89oy2EkAdoWel7DDGCnr5FB0RSYACyGNEL698s53SYKamhG2sJcRmPP--edtcLKGYaH2TcrOJY8p7M4cU3z9HT0YzFf_itp6gH58_XZ5-bc--fdmcfjhrLRN0boXF_WgdH_goKKOUVGu9cyCUAEUd4Y5QLq0RPQemei8ZcXIQg3QCsHBAT9C7g-71Muy9sz7O2Uz6Ote98y-dTNAPX2K40tt0o1mPOSGqCry-Fcjp5-LLrPehWD9NJvq0FA2SK8V5L3FFX_2D7tKS6zlWSjKsKGerI3mgbE6lZD_emQGs12T0Tv9NRq_JaEx0TaaOvry_zN3gnygq8PEA-HrSm-CzLjb4en4Xsrezdin8_5ff7NmiWg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885093651</pqid></control><display><type>article</type><title>The global signal in fMRI: Nuisance or Information?</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</creator><creatorcontrib>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</creatorcontrib><description>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.02.036</identifier><identifier>PMID: 28213118</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brain Mapping - methods ; Data processing ; fMRI ; Functional magnetic resonance imaging ; General linear model ; Global signal ; Humans ; Image Processing, Computer-Assisted - methods ; Magnetic Resonance Imaging - methods ; Motion ; NMR ; Noise ; Nuclear magnetic resonance ; Nuisance ; Physiological noise ; Physiology ; Time series ; Vigilance</subject><ispartof>NeuroImage (Orlando, Fla.), 2017-04, Vol.150, p.213-229</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>2017. Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</citedby><cites>FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28213118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Thomas T.</creatorcontrib><creatorcontrib>Nalci, Alican</creatorcontrib><creatorcontrib>Falahpour, Maryam</creatorcontrib><title>The global signal in fMRI: Nuisance or Information?</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</description><subject>Brain Mapping - methods</subject><subject>Data processing</subject><subject>fMRI</subject><subject>Functional magnetic resonance imaging</subject><subject>General linear model</subject><subject>Global signal</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Motion</subject><subject>NMR</subject><subject>Noise</subject><subject>Nuclear magnetic resonance</subject><subject>Nuisance</subject><subject>Physiological noise</subject><subject>Physiology</subject><subject>Time series</subject><subject>Vigilance</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1TAQhS0EoqXwF1AkNmwSPHb8YgGCiseV2iKhsrYc27n1Va5d7KQS_x5Ht5SWDasZyd8cn5mDUAO4Awz8za6Lfskp7M3WdwSD6DDpMOWP0DFgxVrFBHm89oy2EkAdoWel7DDGCnr5FB0RSYACyGNEL698s53SYKamhG2sJcRmPP--edtcLKGYaH2TcrOJY8p7M4cU3z9HT0YzFf_itp6gH58_XZ5-bc--fdmcfjhrLRN0boXF_WgdH_goKKOUVGu9cyCUAEUd4Y5QLq0RPQemei8ZcXIQg3QCsHBAT9C7g-71Muy9sz7O2Uz6Ote98y-dTNAPX2K40tt0o1mPOSGqCry-Fcjp5-LLrPehWD9NJvq0FA2SK8V5L3FFX_2D7tKS6zlWSjKsKGerI3mgbE6lZD_emQGs12T0Tv9NRq_JaEx0TaaOvry_zN3gnygq8PEA-HrSm-CzLjb4en4Xsrezdin8_5ff7NmiWg</recordid><startdate>20170415</startdate><enddate>20170415</enddate><creator>Liu, Thomas T.</creator><creator>Nalci, Alican</creator><creator>Falahpour, Maryam</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170415</creationdate><title>The global signal in fMRI: Nuisance or Information?</title><author>Liu, Thomas T. ; Nalci, Alican ; Falahpour, Maryam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain Mapping - methods</topic><topic>Data processing</topic><topic>fMRI</topic><topic>Functional magnetic resonance imaging</topic><topic>General linear model</topic><topic>Global signal</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Motion</topic><topic>NMR</topic><topic>Noise</topic><topic>Nuclear magnetic resonance</topic><topic>Nuisance</topic><topic>Physiological noise</topic><topic>Physiology</topic><topic>Time series</topic><topic>Vigilance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Thomas T.</creatorcontrib><creatorcontrib>Nalci, Alican</creatorcontrib><creatorcontrib>Falahpour, Maryam</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Thomas T.</au><au>Nalci, Alican</au><au>Falahpour, Maryam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The global signal in fMRI: Nuisance or Information?</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2017-04-15</date><risdate>2017</risdate><volume>150</volume><spage>213</spage><epage>229</epage><pages>213-229</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>The global signal is widely used as a regressor or normalization factor for removing the effects of global variations in the analysis of functional magnetic resonance imaging (fMRI) studies. However, there is considerable controversy over its use because of the potential bias that can be introduced when it is applied to the analysis of both task-related and resting-state fMRI studies. In this paper we take a closer look at the global signal, examining in detail the various sources that can contribute to the signal. For the most part, the global signal has been treated as a nuisance term, but there is growing evidence that it may also contain valuable information. We also examine the various ways that the global signal has been used in the analysis of fMRI data, including global signal regression, global signal subtraction, and global signal normalization. Furthermore, we describe new ways for understanding the effects of global signal regression and its relation to the other approaches.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28213118</pmid><doi>10.1016/j.neuroimage.2017.02.036</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2017-04, Vol.150, p.213-229 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5406229 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Brain Mapping - methods Data processing fMRI Functional magnetic resonance imaging General linear model Global signal Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Motion NMR Noise Nuclear magnetic resonance Nuisance Physiological noise Physiology Time series Vigilance |
title | The global signal in fMRI: Nuisance or Information? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20global%20signal%20in%20fMRI:%20Nuisance%20or%20Information?&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Liu,%20Thomas%20T.&rft.date=2017-04-15&rft.volume=150&rft.spage=213&rft.epage=229&rft.pages=213-229&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.02.036&rft_dat=%3Cproquest_pubme%3E1869966480%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-7c04fcd6b6f7353321094dd1797193d26d2368ca7461594e852d8b7b8d7107d13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1885093651&rft_id=info:pmid/28213118&rfr_iscdi=true |