Loading…

Direct Imaging of Laser-driven Ultrafast Molecular Rotation

We present a method for visualizing laser-induced, ultrafast molecular rotational wave packet dynamics. We have developed a new 2-dimensional Coulomb explosion imaging setup in which a hitherto-impractical camera angle is realized. In our imaging technique, diatomic molecules are irradiated with a c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of visualized experiments 2017-02 (120)
Main Authors: Mizuse, Kenta, Fujimoto, Romu, Mizutani, Nobuo, Ohshima, Yasuhiro
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a method for visualizing laser-induced, ultrafast molecular rotational wave packet dynamics. We have developed a new 2-dimensional Coulomb explosion imaging setup in which a hitherto-impractical camera angle is realized. In our imaging technique, diatomic molecules are irradiated with a circularly polarized strong laser pulse. The ejected atomic ions are accelerated perpendicularly to the laser propagation. The ions lying in the laser polarization plane are selected through the use of a mechanical slit and imaged with a high-throughput, 2-dimensional detector installed parallel to the polarization plane. Because a circularly polarized (isotropic) Coulomb exploding pulse is used, the observed angular distribution of the ejected ions directly corresponds to the squared rotational wave function at the time of the pulse irradiation. To create a real-time movie of molecular rotation, the present imaging technique is combined with a femtosecond pump-probe optical setup in which the pump pulses create unidirectionally rotating molecular ensembles. Due to the high image throughput of our detection system, the pump-probe experimental condition can be easily optimized by monitoring a real-time snapshot. As a result, the quality of the observed movie is sufficiently high for visualizing the detailed wave nature of motion. We also note that the present technique can be implemented in existing standard ion imaging setups, offering a new camera angle or viewpoint for the molecular systems without the need for extensive modification.
ISSN:1940-087X
1940-087X
DOI:10.3791/54917