Loading…

Selective entrainment of gamma subbands by different slow network oscillations

Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether o...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-04, Vol.114 (17), p.4519-4524
Main Authors: Zhong, Weiwei, Ciatipis, Mareva, Wolfenstetter, Thérèse, Jessberger, Jakob, Müller, Carola, Ponsel, Simon, Yanovsky, Yevgenij, Brankačk, Jurij, Tort, Adriano B. L., Draguhn, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03
cites cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03
container_end_page 4524
container_issue 17
container_start_page 4519
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Zhong, Weiwei
Ciatipis, Mareva
Wolfenstetter, Thérèse
Jessberger, Jakob
Müller, Carola
Ponsel, Simon
Yanovsky, Yevgenij
Brankačk, Jurij
Tort, Adriano B. L.
Draguhn, Andreas
description Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.
doi_str_mv 10.1073/pnas.1617249114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480772</jstor_id><sourcerecordid>26480772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2Kqmxpzz21itRLL4EZx3GcCxJC_UBCcGh7tvwV6m1ib-0ExH-Pt0uhcJrD-83Tm3mEvEM4ROiao01Q-RA5dpT1iOwFWSH0WHPWwx5ZAdCuFoyyffI65zUA9K2AV2SfiqbnTS9W5OK7G52Z_bWrXJiT8mEqs4pDdaWmSVV50VoFmyt9W1k_DC5t5TzGmyq4-Sam31XMxo-jmn0M-Q15Oagxu7f384D8_PL5x-m3-vzy69npyXltWujn2gnNbIO60cYwLmAYWs4Mms5ag11H7cCZ6rC11HJmuQEtNKAzVBurjIbmgBzvfDeLnpw1f7OPcpP8pNKtjMrLp0rwv-RVvJYtQxBNWww-3Ruk-GdxeZaTz8aVO4KLS5YoBO9aypAX9OMzdB2XFMp5Enug5actbBMd7SiTYs7JDQ9hEOS2K7ntSj52VTY-_H_DA_-vnAK83wHrPMf0qHMmoDypuQNfNJxG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902095500</pqid></control><display><type>article</type><title>Selective entrainment of gamma subbands by different slow network oscillations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creator><creatorcontrib>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creatorcontrib><description>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1617249114</identifier><identifier>PMID: 28396398</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activity patterns ; Biological Sciences ; Brain ; Cortex (olfactory) ; Cortex (parietal) ; Coupling ; Data processing ; Entrainment ; Exploration ; Hippocampus ; Information processing ; Mice ; Neural coding ; Neurons ; Olfactory bulb ; Oscillations ; Respiration ; Rhythm ; Rodents ; Switching theory ; Temporal lobe ; Theta rhythms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (17), p.4519-4524</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 25, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</citedby><cites>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</cites><orcidid>0000-0002-9877-7816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28396398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Weiwei</creatorcontrib><creatorcontrib>Ciatipis, Mareva</creatorcontrib><creatorcontrib>Wolfenstetter, Thérèse</creatorcontrib><creatorcontrib>Jessberger, Jakob</creatorcontrib><creatorcontrib>Müller, Carola</creatorcontrib><creatorcontrib>Ponsel, Simon</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><title>Selective entrainment of gamma subbands by different slow network oscillations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</description><subject>Activity patterns</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cortex (olfactory)</subject><subject>Cortex (parietal)</subject><subject>Coupling</subject><subject>Data processing</subject><subject>Entrainment</subject><subject>Exploration</subject><subject>Hippocampus</subject><subject>Information processing</subject><subject>Mice</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Olfactory bulb</subject><subject>Oscillations</subject><subject>Respiration</subject><subject>Rhythm</subject><subject>Rodents</subject><subject>Switching theory</subject><subject>Temporal lobe</subject><subject>Theta rhythms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2Kqmxpzz21itRLL4EZx3GcCxJC_UBCcGh7tvwV6m1ib-0ExH-Pt0uhcJrD-83Tm3mEvEM4ROiao01Q-RA5dpT1iOwFWSH0WHPWwx5ZAdCuFoyyffI65zUA9K2AV2SfiqbnTS9W5OK7G52Z_bWrXJiT8mEqs4pDdaWmSVV50VoFmyt9W1k_DC5t5TzGmyq4-Sam31XMxo-jmn0M-Q15Oagxu7f384D8_PL5x-m3-vzy69npyXltWujn2gnNbIO60cYwLmAYWs4Mms5ag11H7cCZ6rC11HJmuQEtNKAzVBurjIbmgBzvfDeLnpw1f7OPcpP8pNKtjMrLp0rwv-RVvJYtQxBNWww-3Ruk-GdxeZaTz8aVO4KLS5YoBO9aypAX9OMzdB2XFMp5Enug5actbBMd7SiTYs7JDQ9hEOS2K7ntSj52VTY-_H_DA_-vnAK83wHrPMf0qHMmoDypuQNfNJxG</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Zhong, Weiwei</creator><creator>Ciatipis, Mareva</creator><creator>Wolfenstetter, Thérèse</creator><creator>Jessberger, Jakob</creator><creator>Müller, Carola</creator><creator>Ponsel, Simon</creator><creator>Yanovsky, Yevgenij</creator><creator>Brankačk, Jurij</creator><creator>Tort, Adriano B. L.</creator><creator>Draguhn, Andreas</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9877-7816</orcidid></search><sort><creationdate>20170425</creationdate><title>Selective entrainment of gamma subbands by different slow network oscillations</title><author>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity patterns</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cortex (olfactory)</topic><topic>Cortex (parietal)</topic><topic>Coupling</topic><topic>Data processing</topic><topic>Entrainment</topic><topic>Exploration</topic><topic>Hippocampus</topic><topic>Information processing</topic><topic>Mice</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Olfactory bulb</topic><topic>Oscillations</topic><topic>Respiration</topic><topic>Rhythm</topic><topic>Rodents</topic><topic>Switching theory</topic><topic>Temporal lobe</topic><topic>Theta rhythms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Weiwei</creatorcontrib><creatorcontrib>Ciatipis, Mareva</creatorcontrib><creatorcontrib>Wolfenstetter, Thérèse</creatorcontrib><creatorcontrib>Jessberger, Jakob</creatorcontrib><creatorcontrib>Müller, Carola</creatorcontrib><creatorcontrib>Ponsel, Simon</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Weiwei</au><au>Ciatipis, Mareva</au><au>Wolfenstetter, Thérèse</au><au>Jessberger, Jakob</au><au>Müller, Carola</au><au>Ponsel, Simon</au><au>Yanovsky, Yevgenij</au><au>Brankačk, Jurij</au><au>Tort, Adriano B. L.</au><au>Draguhn, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective entrainment of gamma subbands by different slow network oscillations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>114</volume><issue>17</issue><spage>4519</spage><epage>4524</epage><pages>4519-4524</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28396398</pmid><doi>10.1073/pnas.1617249114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9877-7816</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (17), p.4519-4524
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410835
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Activity patterns
Biological Sciences
Brain
Cortex (olfactory)
Cortex (parietal)
Coupling
Data processing
Entrainment
Exploration
Hippocampus
Information processing
Mice
Neural coding
Neurons
Olfactory bulb
Oscillations
Respiration
Rhythm
Rodents
Switching theory
Temporal lobe
Theta rhythms
title Selective entrainment of gamma subbands by different slow network oscillations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20entrainment%20of%20gamma%20subbands%20by%20different%20slow%20network%20oscillations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhong,%20Weiwei&rft.date=2017-04-25&rft.volume=114&rft.issue=17&rft.spage=4519&rft.epage=4524&rft.pages=4519-4524&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1617249114&rft_dat=%3Cjstor_pubme%3E26480772%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1902095500&rft_id=info:pmid/28396398&rft_jstor_id=26480772&rfr_iscdi=true