Loading…
Selective entrainment of gamma subbands by different slow network oscillations
Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether o...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-04, Vol.114 (17), p.4519-4524 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03 |
---|---|
cites | cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03 |
container_end_page | 4524 |
container_issue | 17 |
container_start_page | 4519 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Zhong, Weiwei Ciatipis, Mareva Wolfenstetter, Thérèse Jessberger, Jakob Müller, Carola Ponsel, Simon Yanovsky, Yevgenij Brankačk, Jurij Tort, Adriano B. L. Draguhn, Andreas |
description | Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm. |
doi_str_mv | 10.1073/pnas.1617249114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26480772</jstor_id><sourcerecordid>26480772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxa2Kqmxpzz21itRLL4EZx3GcCxJC_UBCcGh7tvwV6m1ib-0ExH-Pt0uhcJrD-83Tm3mEvEM4ROiao01Q-RA5dpT1iOwFWSH0WHPWwx5ZAdCuFoyyffI65zUA9K2AV2SfiqbnTS9W5OK7G52Z_bWrXJiT8mEqs4pDdaWmSVV50VoFmyt9W1k_DC5t5TzGmyq4-Sam31XMxo-jmn0M-Q15Oagxu7f384D8_PL5x-m3-vzy69npyXltWujn2gnNbIO60cYwLmAYWs4Mms5ag11H7cCZ6rC11HJmuQEtNKAzVBurjIbmgBzvfDeLnpw1f7OPcpP8pNKtjMrLp0rwv-RVvJYtQxBNWww-3Ruk-GdxeZaTz8aVO4KLS5YoBO9aypAX9OMzdB2XFMp5Enug5actbBMd7SiTYs7JDQ9hEOS2K7ntSj52VTY-_H_DA_-vnAK83wHrPMf0qHMmoDypuQNfNJxG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902095500</pqid></control><display><type>article</type><title>Selective entrainment of gamma subbands by different slow network oscillations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creator><creatorcontrib>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</creatorcontrib><description>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1617249114</identifier><identifier>PMID: 28396398</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activity patterns ; Biological Sciences ; Brain ; Cortex (olfactory) ; Cortex (parietal) ; Coupling ; Data processing ; Entrainment ; Exploration ; Hippocampus ; Information processing ; Mice ; Neural coding ; Neurons ; Olfactory bulb ; Oscillations ; Respiration ; Rhythm ; Rodents ; Switching theory ; Temporal lobe ; Theta rhythms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (17), p.4519-4524</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Apr 25, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</citedby><cites>FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</cites><orcidid>0000-0002-9877-7816</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26480772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26480772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28396398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhong, Weiwei</creatorcontrib><creatorcontrib>Ciatipis, Mareva</creatorcontrib><creatorcontrib>Wolfenstetter, Thérèse</creatorcontrib><creatorcontrib>Jessberger, Jakob</creatorcontrib><creatorcontrib>Müller, Carola</creatorcontrib><creatorcontrib>Ponsel, Simon</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><title>Selective entrainment of gamma subbands by different slow network oscillations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</description><subject>Activity patterns</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Cortex (olfactory)</subject><subject>Cortex (parietal)</subject><subject>Coupling</subject><subject>Data processing</subject><subject>Entrainment</subject><subject>Exploration</subject><subject>Hippocampus</subject><subject>Information processing</subject><subject>Mice</subject><subject>Neural coding</subject><subject>Neurons</subject><subject>Olfactory bulb</subject><subject>Oscillations</subject><subject>Respiration</subject><subject>Rhythm</subject><subject>Rodents</subject><subject>Switching theory</subject><subject>Temporal lobe</subject><subject>Theta rhythms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1P3DAQxa2Kqmxpzz21itRLL4EZx3GcCxJC_UBCcGh7tvwV6m1ib-0ExH-Pt0uhcJrD-83Tm3mEvEM4ROiao01Q-RA5dpT1iOwFWSH0WHPWwx5ZAdCuFoyyffI65zUA9K2AV2SfiqbnTS9W5OK7G52Z_bWrXJiT8mEqs4pDdaWmSVV50VoFmyt9W1k_DC5t5TzGmyq4-Sam31XMxo-jmn0M-Q15Oagxu7f384D8_PL5x-m3-vzy69npyXltWujn2gnNbIO60cYwLmAYWs4Mms5ag11H7cCZ6rC11HJmuQEtNKAzVBurjIbmgBzvfDeLnpw1f7OPcpP8pNKtjMrLp0rwv-RVvJYtQxBNWww-3Ruk-GdxeZaTz8aVO4KLS5YoBO9aypAX9OMzdB2XFMp5Enug5actbBMd7SiTYs7JDQ9hEOS2K7ntSj52VTY-_H_DA_-vnAK83wHrPMf0qHMmoDypuQNfNJxG</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Zhong, Weiwei</creator><creator>Ciatipis, Mareva</creator><creator>Wolfenstetter, Thérèse</creator><creator>Jessberger, Jakob</creator><creator>Müller, Carola</creator><creator>Ponsel, Simon</creator><creator>Yanovsky, Yevgenij</creator><creator>Brankačk, Jurij</creator><creator>Tort, Adriano B. L.</creator><creator>Draguhn, Andreas</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9877-7816</orcidid></search><sort><creationdate>20170425</creationdate><title>Selective entrainment of gamma subbands by different slow network oscillations</title><author>Zhong, Weiwei ; Ciatipis, Mareva ; Wolfenstetter, Thérèse ; Jessberger, Jakob ; Müller, Carola ; Ponsel, Simon ; Yanovsky, Yevgenij ; Brankačk, Jurij ; Tort, Adriano B. L. ; Draguhn, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activity patterns</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Cortex (olfactory)</topic><topic>Cortex (parietal)</topic><topic>Coupling</topic><topic>Data processing</topic><topic>Entrainment</topic><topic>Exploration</topic><topic>Hippocampus</topic><topic>Information processing</topic><topic>Mice</topic><topic>Neural coding</topic><topic>Neurons</topic><topic>Olfactory bulb</topic><topic>Oscillations</topic><topic>Respiration</topic><topic>Rhythm</topic><topic>Rodents</topic><topic>Switching theory</topic><topic>Temporal lobe</topic><topic>Theta rhythms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Weiwei</creatorcontrib><creatorcontrib>Ciatipis, Mareva</creatorcontrib><creatorcontrib>Wolfenstetter, Thérèse</creatorcontrib><creatorcontrib>Jessberger, Jakob</creatorcontrib><creatorcontrib>Müller, Carola</creatorcontrib><creatorcontrib>Ponsel, Simon</creatorcontrib><creatorcontrib>Yanovsky, Yevgenij</creatorcontrib><creatorcontrib>Brankačk, Jurij</creatorcontrib><creatorcontrib>Tort, Adriano B. L.</creatorcontrib><creatorcontrib>Draguhn, Andreas</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Weiwei</au><au>Ciatipis, Mareva</au><au>Wolfenstetter, Thérèse</au><au>Jessberger, Jakob</au><au>Müller, Carola</au><au>Ponsel, Simon</au><au>Yanovsky, Yevgenij</au><au>Brankačk, Jurij</au><au>Tort, Adriano B. L.</au><au>Draguhn, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective entrainment of gamma subbands by different slow network oscillations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>114</volume><issue>17</issue><spage>4519</spage><epage>4524</epage><pages>4519-4524</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Theta oscillations (4–12 Hz) are thought to provide a common temporal reference for the exchange of information among distant brain networks. On the other hand, faster gamma-frequency oscillations (30–160 Hz) nested within theta cycles are believed to underlie local information processing. Whether oscillatory coupling between global and local oscillations, as showcased by theta-gamma coupling, is a general coding mechanism remains unknown. Here, we investigated two different patterns of oscillatory network activity, theta and respiration-induced network rhythms, in four brain regions of freely moving mice: olfactory bulb (OB), prelimbic cortex (PLC), parietal cortex (PAC), and dorsal hippocampus [cornu ammonis 1 (CA1)]. We report differential state- and region-specific coupling between the slow large-scale rhythms and superimposed fast oscillations. During awake immobility, all four regions displayed a respiration-entrained rhythm (RR) with decreasing power from OB to CA1, which coupled exclusively to the 80- to 120-Hz gamma subband (γ₂). During exploration, when theta activity was prevailing, OB and PLC still showed exclusive coupling of RR with γ₂ and no theta-gamma coupling, whereas PAC and CA1 switched to selective coupling of theta with 40- to 80-Hz (γ₁) and 120- to 160-Hz (γ₃) gamma subbands. Our data illustrate a strong, specific interaction between neuronal activity patterns and respiration. Moreover, our results suggest that the coupling between slow and fast oscillations is a general brain mechanism not limited to the theta rhythm.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28396398</pmid><doi>10.1073/pnas.1617249114</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9877-7816</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-04, Vol.114 (17), p.4519-4524 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5410835 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Activity patterns Biological Sciences Brain Cortex (olfactory) Cortex (parietal) Coupling Data processing Entrainment Exploration Hippocampus Information processing Mice Neural coding Neurons Olfactory bulb Oscillations Respiration Rhythm Rodents Switching theory Temporal lobe Theta rhythms |
title | Selective entrainment of gamma subbands by different slow network oscillations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20entrainment%20of%20gamma%20subbands%20by%20different%20slow%20network%20oscillations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhong,%20Weiwei&rft.date=2017-04-25&rft.volume=114&rft.issue=17&rft.spage=4519&rft.epage=4524&rft.pages=4519-4524&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1617249114&rft_dat=%3Cjstor_pubme%3E26480772%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-e8b4d31b3bcc4680ff564c1c7ddc1772df64a715d2d64d6c0b8b01ec2bcdacb03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1902095500&rft_id=info:pmid/28396398&rft_jstor_id=26480772&rfr_iscdi=true |