Loading…

Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery

Metabolomics plays an important role in providing insight into the etiology and mechanisms of hepatocellular carcinoma (HCC). This is accomplished by a comprehensive analysis of patterns involved in metabolic alterations in human specimens. This study compares the levels of plasma metabolites in HCC...

Full description

Saved in:
Bibliographic Details
Published in:Cancer epidemiology, biomarkers & prevention biomarkers & prevention, 2017-05, Vol.26 (5), p.675-683
Main Authors: Di Poto, Cristina, Ferrarini, Alessia, Zhao, Yi, Varghese, Rency S, Tu, Chao, Zuo, Yiming, Wang, Minkun, Nezami Ranjbar, Mohammad R, Luo, Yue, Zhang, Chi, Desai, Chirag S, Shetty, Kirti, Tadesse, Mahlet G, Ressom, Habtom W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403
cites cdi_FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403
container_end_page 683
container_issue 5
container_start_page 675
container_title Cancer epidemiology, biomarkers & prevention
container_volume 26
creator Di Poto, Cristina
Ferrarini, Alessia
Zhao, Yi
Varghese, Rency S
Tu, Chao
Zuo, Yiming
Wang, Minkun
Nezami Ranjbar, Mohammad R
Luo, Yue
Zhang, Chi
Desai, Chirag S
Shetty, Kirti
Tadesse, Mahlet G
Ressom, Habtom W
description Metabolomics plays an important role in providing insight into the etiology and mechanisms of hepatocellular carcinoma (HCC). This is accomplished by a comprehensive analysis of patterns involved in metabolic alterations in human specimens. This study compares the levels of plasma metabolites in HCC cases versus cirrhotic patients and evaluates the ability of candidate metabolites in distinguishing the two groups. Also, it investigates the combined use of metabolites and clinical covariates for detection of HCC in patients with liver cirrhosis. Untargeted analysis of metabolites in plasma from 128 subjects (63 HCC cases and 65 cirrhotic controls) was conducted using gas chromatography coupled to mass spectrometry (GC-MS). This was followed by targeted evaluation of selected metabolites. LASSO regression was used to select a set of metabolites and clinical covariates that are associated with HCC. The performance of candidate biomarkers in distinguishing HCC from cirrhosis was evaluated through a leave-one-out cross-validation based on area under the receiver operating characteristics (ROC) curve. We identified 11 metabolites and three clinical covariates that differentiated HCC cases from cirrhotic controls. Combining these features in a panel for disease classification using support vector machines (SVM) yielded better area under the ROC curve compared with alpha-fetoprotein (AFP). This study demonstrates the combination of metabolites and clinical covariates as an effective approach for early detection of HCC in patients with liver cirrhosis. Further investigation of these findings may improve understanding of HCC pathophysiology and possible implication of the metabolites in HCC prevention and diagnosis. .
doi_str_mv 10.1158/1055-9965.EPI-16-0366
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897370239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403</originalsourceid><addsrcrecordid>eNqNkUtP3TAQhS3Uqrz6E0CWumETaseeON4glctTuhUs2FuOcbiG3PhiJxfBr2ciHmq76sqW55vjM3MI2ePskHOof3IGUGhdweHp9WXBq4KJqtogWxxEXSgF8AXvH8wm2c75njGmNMA3slkqzYXQsEUef_vBNrGLy-DobGGTdYNP4cUOIfY0tvTCr-wQne-6sbOJzmxyoY9LS0NPr5Hy_ZDpUxgWdB7WHoGQ0iLmkGkbEz0OiKYHfD8J2UUEnnfJ19Z22X9_P3fIzdnpzeyimF-dX85-zQsnVTkUZau9UKpVTguQgI61aLisnWRlZZ2QHovSKcVVo9qm5lp7eVtZ2wAwycQOOXqTXY3N0t869JlsZ1YpoKFnE20wf1f6sDB3cW1AciFliQIH7wIpPo4-D2aJI-AebO_jmA2vtRKKlUL_ByqhFhWvJ1s__kHv45h6XIThuhYlcuX0N7xRLsWck28_fXNmpvjNFK2ZojUYv-GVmeLHvv0_h_7s-shbvALg76zu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1983258322</pqid></control><display><type>article</type><title>Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Di Poto, Cristina ; Ferrarini, Alessia ; Zhao, Yi ; Varghese, Rency S ; Tu, Chao ; Zuo, Yiming ; Wang, Minkun ; Nezami Ranjbar, Mohammad R ; Luo, Yue ; Zhang, Chi ; Desai, Chirag S ; Shetty, Kirti ; Tadesse, Mahlet G ; Ressom, Habtom W</creator><creatorcontrib>Di Poto, Cristina ; Ferrarini, Alessia ; Zhao, Yi ; Varghese, Rency S ; Tu, Chao ; Zuo, Yiming ; Wang, Minkun ; Nezami Ranjbar, Mohammad R ; Luo, Yue ; Zhang, Chi ; Desai, Chirag S ; Shetty, Kirti ; Tadesse, Mahlet G ; Ressom, Habtom W</creatorcontrib><description>Metabolomics plays an important role in providing insight into the etiology and mechanisms of hepatocellular carcinoma (HCC). This is accomplished by a comprehensive analysis of patterns involved in metabolic alterations in human specimens. This study compares the levels of plasma metabolites in HCC cases versus cirrhotic patients and evaluates the ability of candidate metabolites in distinguishing the two groups. Also, it investigates the combined use of metabolites and clinical covariates for detection of HCC in patients with liver cirrhosis. Untargeted analysis of metabolites in plasma from 128 subjects (63 HCC cases and 65 cirrhotic controls) was conducted using gas chromatography coupled to mass spectrometry (GC-MS). This was followed by targeted evaluation of selected metabolites. LASSO regression was used to select a set of metabolites and clinical covariates that are associated with HCC. The performance of candidate biomarkers in distinguishing HCC from cirrhosis was evaluated through a leave-one-out cross-validation based on area under the receiver operating characteristics (ROC) curve. We identified 11 metabolites and three clinical covariates that differentiated HCC cases from cirrhotic controls. Combining these features in a panel for disease classification using support vector machines (SVM) yielded better area under the ROC curve compared with alpha-fetoprotein (AFP). This study demonstrates the combination of metabolites and clinical covariates as an effective approach for early detection of HCC in patients with liver cirrhosis. Further investigation of these findings may improve understanding of HCC pathophysiology and possible implication of the metabolites in HCC prevention and diagnosis. .</description><identifier>ISSN: 1055-9965</identifier><identifier>EISSN: 1538-7755</identifier><identifier>DOI: 10.1158/1055-9965.EPI-16-0366</identifier><identifier>PMID: 27913395</identifier><language>eng</language><publisher>United States: American Association for Cancer Research, Inc</publisher><subject>Adult ; Aged ; Biomarkers ; Biomarkers, Tumor - blood ; Carcinoma, Hepatocellular - blood ; Carcinoma, Hepatocellular - diagnosis ; Cirrhosis ; Etiology ; Female ; Gas chromatography ; Hepatocellular carcinoma ; Humans ; Liver ; Liver cancer ; Liver cirrhosis ; Liver Cirrhosis - blood ; Liver Cirrhosis - diagnosis ; Liver Neoplasms - blood ; Liver Neoplasms - diagnosis ; Male ; Mass spectrometry ; Mass spectroscopy ; Metabolites ; Metabolomics ; Metabolomics - methods ; Middle Aged ; Sensitivity and Specificity ; α-Fetoprotein</subject><ispartof>Cancer epidemiology, biomarkers &amp; prevention, 2017-05, Vol.26 (5), p.675-683</ispartof><rights>2016 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research, Inc. May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403</citedby><cites>FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27913395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Poto, Cristina</creatorcontrib><creatorcontrib>Ferrarini, Alessia</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Varghese, Rency S</creatorcontrib><creatorcontrib>Tu, Chao</creatorcontrib><creatorcontrib>Zuo, Yiming</creatorcontrib><creatorcontrib>Wang, Minkun</creatorcontrib><creatorcontrib>Nezami Ranjbar, Mohammad R</creatorcontrib><creatorcontrib>Luo, Yue</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Desai, Chirag S</creatorcontrib><creatorcontrib>Shetty, Kirti</creatorcontrib><creatorcontrib>Tadesse, Mahlet G</creatorcontrib><creatorcontrib>Ressom, Habtom W</creatorcontrib><title>Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery</title><title>Cancer epidemiology, biomarkers &amp; prevention</title><addtitle>Cancer Epidemiol Biomarkers Prev</addtitle><description>Metabolomics plays an important role in providing insight into the etiology and mechanisms of hepatocellular carcinoma (HCC). This is accomplished by a comprehensive analysis of patterns involved in metabolic alterations in human specimens. This study compares the levels of plasma metabolites in HCC cases versus cirrhotic patients and evaluates the ability of candidate metabolites in distinguishing the two groups. Also, it investigates the combined use of metabolites and clinical covariates for detection of HCC in patients with liver cirrhosis. Untargeted analysis of metabolites in plasma from 128 subjects (63 HCC cases and 65 cirrhotic controls) was conducted using gas chromatography coupled to mass spectrometry (GC-MS). This was followed by targeted evaluation of selected metabolites. LASSO regression was used to select a set of metabolites and clinical covariates that are associated with HCC. The performance of candidate biomarkers in distinguishing HCC from cirrhosis was evaluated through a leave-one-out cross-validation based on area under the receiver operating characteristics (ROC) curve. We identified 11 metabolites and three clinical covariates that differentiated HCC cases from cirrhotic controls. Combining these features in a panel for disease classification using support vector machines (SVM) yielded better area under the ROC curve compared with alpha-fetoprotein (AFP). This study demonstrates the combination of metabolites and clinical covariates as an effective approach for early detection of HCC in patients with liver cirrhosis. Further investigation of these findings may improve understanding of HCC pathophysiology and possible implication of the metabolites in HCC prevention and diagnosis. .</description><subject>Adult</subject><subject>Aged</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Carcinoma, Hepatocellular - blood</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Cirrhosis</subject><subject>Etiology</subject><subject>Female</subject><subject>Gas chromatography</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver Cirrhosis - blood</subject><subject>Liver Cirrhosis - diagnosis</subject><subject>Liver Neoplasms - blood</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Male</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Middle Aged</subject><subject>Sensitivity and Specificity</subject><subject>α-Fetoprotein</subject><issn>1055-9965</issn><issn>1538-7755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkUtP3TAQhS3Uqrz6E0CWumETaseeON4glctTuhUs2FuOcbiG3PhiJxfBr2ciHmq76sqW55vjM3MI2ePskHOof3IGUGhdweHp9WXBq4KJqtogWxxEXSgF8AXvH8wm2c75njGmNMA3slkqzYXQsEUef_vBNrGLy-DobGGTdYNP4cUOIfY0tvTCr-wQne-6sbOJzmxyoY9LS0NPr5Hy_ZDpUxgWdB7WHoGQ0iLmkGkbEz0OiKYHfD8J2UUEnnfJ19Z22X9_P3fIzdnpzeyimF-dX85-zQsnVTkUZau9UKpVTguQgI61aLisnWRlZZ2QHovSKcVVo9qm5lp7eVtZ2wAwycQOOXqTXY3N0t869JlsZ1YpoKFnE20wf1f6sDB3cW1AciFliQIH7wIpPo4-D2aJI-AebO_jmA2vtRKKlUL_ByqhFhWvJ1s__kHv45h6XIThuhYlcuX0N7xRLsWck28_fXNmpvjNFK2ZojUYv-GVmeLHvv0_h_7s-shbvALg76zu</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Di Poto, Cristina</creator><creator>Ferrarini, Alessia</creator><creator>Zhao, Yi</creator><creator>Varghese, Rency S</creator><creator>Tu, Chao</creator><creator>Zuo, Yiming</creator><creator>Wang, Minkun</creator><creator>Nezami Ranjbar, Mohammad R</creator><creator>Luo, Yue</creator><creator>Zhang, Chi</creator><creator>Desai, Chirag S</creator><creator>Shetty, Kirti</creator><creator>Tadesse, Mahlet G</creator><creator>Ressom, Habtom W</creator><general>American Association for Cancer Research, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>7TO</scope><scope>H94</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170501</creationdate><title>Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery</title><author>Di Poto, Cristina ; Ferrarini, Alessia ; Zhao, Yi ; Varghese, Rency S ; Tu, Chao ; Zuo, Yiming ; Wang, Minkun ; Nezami Ranjbar, Mohammad R ; Luo, Yue ; Zhang, Chi ; Desai, Chirag S ; Shetty, Kirti ; Tadesse, Mahlet G ; Ressom, Habtom W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Carcinoma, Hepatocellular - blood</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Cirrhosis</topic><topic>Etiology</topic><topic>Female</topic><topic>Gas chromatography</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver Cirrhosis - blood</topic><topic>Liver Cirrhosis - diagnosis</topic><topic>Liver Neoplasms - blood</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Male</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Middle Aged</topic><topic>Sensitivity and Specificity</topic><topic>α-Fetoprotein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Poto, Cristina</creatorcontrib><creatorcontrib>Ferrarini, Alessia</creatorcontrib><creatorcontrib>Zhao, Yi</creatorcontrib><creatorcontrib>Varghese, Rency S</creatorcontrib><creatorcontrib>Tu, Chao</creatorcontrib><creatorcontrib>Zuo, Yiming</creatorcontrib><creatorcontrib>Wang, Minkun</creatorcontrib><creatorcontrib>Nezami Ranjbar, Mohammad R</creatorcontrib><creatorcontrib>Luo, Yue</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Desai, Chirag S</creatorcontrib><creatorcontrib>Shetty, Kirti</creatorcontrib><creatorcontrib>Tadesse, Mahlet G</creatorcontrib><creatorcontrib>Ressom, Habtom W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer epidemiology, biomarkers &amp; prevention</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Poto, Cristina</au><au>Ferrarini, Alessia</au><au>Zhao, Yi</au><au>Varghese, Rency S</au><au>Tu, Chao</au><au>Zuo, Yiming</au><au>Wang, Minkun</au><au>Nezami Ranjbar, Mohammad R</au><au>Luo, Yue</au><au>Zhang, Chi</au><au>Desai, Chirag S</au><au>Shetty, Kirti</au><au>Tadesse, Mahlet G</au><au>Ressom, Habtom W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery</atitle><jtitle>Cancer epidemiology, biomarkers &amp; prevention</jtitle><addtitle>Cancer Epidemiol Biomarkers Prev</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>26</volume><issue>5</issue><spage>675</spage><epage>683</epage><pages>675-683</pages><issn>1055-9965</issn><eissn>1538-7755</eissn><abstract>Metabolomics plays an important role in providing insight into the etiology and mechanisms of hepatocellular carcinoma (HCC). This is accomplished by a comprehensive analysis of patterns involved in metabolic alterations in human specimens. This study compares the levels of plasma metabolites in HCC cases versus cirrhotic patients and evaluates the ability of candidate metabolites in distinguishing the two groups. Also, it investigates the combined use of metabolites and clinical covariates for detection of HCC in patients with liver cirrhosis. Untargeted analysis of metabolites in plasma from 128 subjects (63 HCC cases and 65 cirrhotic controls) was conducted using gas chromatography coupled to mass spectrometry (GC-MS). This was followed by targeted evaluation of selected metabolites. LASSO regression was used to select a set of metabolites and clinical covariates that are associated with HCC. The performance of candidate biomarkers in distinguishing HCC from cirrhosis was evaluated through a leave-one-out cross-validation based on area under the receiver operating characteristics (ROC) curve. We identified 11 metabolites and three clinical covariates that differentiated HCC cases from cirrhotic controls. Combining these features in a panel for disease classification using support vector machines (SVM) yielded better area under the ROC curve compared with alpha-fetoprotein (AFP). This study demonstrates the combination of metabolites and clinical covariates as an effective approach for early detection of HCC in patients with liver cirrhosis. Further investigation of these findings may improve understanding of HCC pathophysiology and possible implication of the metabolites in HCC prevention and diagnosis. .</abstract><cop>United States</cop><pub>American Association for Cancer Research, Inc</pub><pmid>27913395</pmid><doi>10.1158/1055-9965.EPI-16-0366</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1055-9965
ispartof Cancer epidemiology, biomarkers & prevention, 2017-05, Vol.26 (5), p.675-683
issn 1055-9965
1538-7755
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5413442
source Free E-Journal (出版社公開部分のみ)
subjects Adult
Aged
Biomarkers
Biomarkers, Tumor - blood
Carcinoma, Hepatocellular - blood
Carcinoma, Hepatocellular - diagnosis
Cirrhosis
Etiology
Female
Gas chromatography
Hepatocellular carcinoma
Humans
Liver
Liver cancer
Liver cirrhosis
Liver Cirrhosis - blood
Liver Cirrhosis - diagnosis
Liver Neoplasms - blood
Liver Neoplasms - diagnosis
Male
Mass spectrometry
Mass spectroscopy
Metabolites
Metabolomics
Metabolomics - methods
Middle Aged
Sensitivity and Specificity
α-Fetoprotein
title Metabolomic Characterization of Hepatocellular Carcinoma in Patients with Liver Cirrhosis for Biomarker Discovery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolomic%20Characterization%20of%20Hepatocellular%20Carcinoma%20in%20Patients%20with%20Liver%20Cirrhosis%20for%20Biomarker%20Discovery&rft.jtitle=Cancer%20epidemiology,%20biomarkers%20&%20prevention&rft.au=Di%20Poto,%20Cristina&rft.date=2017-05-01&rft.volume=26&rft.issue=5&rft.spage=675&rft.epage=683&rft.pages=675-683&rft.issn=1055-9965&rft.eissn=1538-7755&rft_id=info:doi/10.1158/1055-9965.EPI-16-0366&rft_dat=%3Cproquest_pubme%3E1897370239%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c472t-2f9e377f7c9354527993b148c4026ac34e77f4c7717b7fb8199e4d6aab550403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1983258322&rft_id=info:pmid/27913395&rfr_iscdi=true