Loading…

Expression of a Mutated Bovine Growth Hormone Gene Suppresses Growth of Transgenic Mice

To determine the importance of the third α-helix in bovine growth hormone (bGH) relative to growth-related biological activities, the following experimental approach was used: (i) mutagenesis of helix III of bGH to generate an idealized amphiphilic helix; (ii) in vitro expression analyses of the mut...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 1990-07, Vol.87 (13), p.5061-5065
Main Authors: Chen, Wen Y., Wight, David C., Wagner, Thomas E., Kopchick, John J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To determine the importance of the third α-helix in bovine growth hormone (bGH) relative to growth-related biological activities, the following experimental approach was used: (i) mutagenesis of helix III of bGH to generate an idealized amphiphilic helix; (ii) in vitro expression analyses of the mutated bGH gene in cultured mouse L cells; (iii) mouse liver membrane binding studies of wild-type and mutated bGH; and (iv) expression of the mutated gene in the transgenic mouse. An altered bGH gene (pBGH10Δ 6-M8) was generated that encodes the following changes: glutamate-117 to leucine, glycine-119 to arginine, and alanine-122 to aspartate. The plasmid pBGH10Δ 6-M8 was shown to be expressed in, and its protein product secreted by, mouse L cells. The altered hormone possessed the same binding affinity to mouse liver membrane preparations as wild-type bGH. Transgenic mice containing the mutated bGH gene, however, showed a significant growth-suppressed phenotype. The degree of suppression was directly related to serum levels of the altered bGH molecule.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.87.13.5061