Loading…
Whole-exome sequencing identifies SGCD and ACVRL1 mutations associated with total anomalous pulmonary venous return (TAPVR) in Chinese population
As a rare type of Congenital Heart Defects (CHD), the genetic mechanism of Total Anomalous Pulmonary Venous Return (TAPVR) remains unknown, although previous studies have revealed potential disease-driving regions/genes. Blood samples collected from the 6 sporadic TAPVR cases and 81 non-TAPVR contro...
Saved in:
Published in: | Oncotarget 2017-04, Vol.8 (17), p.27812-27819 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As a rare type of Congenital Heart Defects (CHD), the genetic mechanism of Total Anomalous Pulmonary Venous Return (TAPVR) remains unknown, although previous studies have revealed potential disease-driving regions/genes. Blood samples collected from the 6 sporadic TAPVR cases and 81 non-TAPVR controls were subjected to whole exome sequencing. All detected variations were confirmed by direct Sanger sequencing. Here, we identified 2 non-synonymous missense mutations: c.C652T, p.R218W in activin A receptor type II-like 1 (ACVRL1), c.C717G, p.D239E in sarcoglycan delta (SGCD). Our results offered the landscape of mutations for TAPVR in Chinese population firstly and are valuable in the mutation-based pre- and post-natal screening and genetic diagnosis for TAPVR. |
---|---|
ISSN: | 1949-2553 1949-2553 |
DOI: | 10.18632/oncotarget.15434 |