Loading…

The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials

Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based ma...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2016-11, Vol.9 (12), p.958-958
Main Authors: Brezavšček, Miha, Fawzy, Ahmed, Bächle, Maria, Tuna, Taskin, Fischer, Jens, Att, Wael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393
cites cdi_FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393
container_end_page 958
container_issue 12
container_start_page 958
container_title Materials
container_volume 9
creator Brezavšček, Miha
Fawzy, Ahmed
Bächle, Maria
Tuna, Taskin
Fischer, Jens
Att, Wael
description Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based materials. Smooth and rough zirconia-based disks and cylindrical implants were treated with UV light for 15 min and subsequently placed in rat femurs. Surface characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vivo histomorphometry revealed that the percentage of bone-implant contact and the amount of bone volume, formed around UV-treated implants, increased by 3-7-fold for smooth surfaces and by 1.4-1.7-fold for rough surfaces compared to non-treated specimens at Weeks 2 and 4 of healing, respectively. A biomechanical test showed that UV treatment accelerated the establishment of bone-zirconia integration and enhanced the strength of the bone-implant interface by two-fold. Additionally, surface characterization of the zirconia disks revealed that UV treatment decreased the amount of surface carbon and converted the hydrophilic status from hydrophobic to superhydrophilic. This study indicates that UV light pretreatment enhances the osteoconductive capacity of zirconia-based materials.
doi_str_mv 10.3390/ma9120958
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5457022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880021045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393</originalsourceid><addsrcrecordid>eNqFkU9LJDEQxcOysop62C8gDV7WQ7uVpDPpXAQd_AcuXkYPewmVdFoj050xSQt-eyO6g3rZulSF9-NRlUfITwqHnCv4PaCiDJRov5EtqtSspqppvn-YN8luSg9QinPaMvWDbLJWygZa2CK3i3tXnfa9s7kKfXVzWy2iwzy4sbzHKhf1OmUXbBi7yWb_5Ko5rtD6_PzK__WxKB7rE0yuq_5gdtHjMu2Qjb40t_vet8nN2eliflFfXZ9fzo-vaiuA5ZoZ6BGVksxaajhHaoyVnCljZNMZ2fWWoQDToBQdBQFdJ5AbIYWk1HLFt8nRm-9qMoPrbFk74lKvoh8wPuuAXn9WRn-v78KTFo2QwFgx-PVuEMPj5FLWg0_WLZc4ujAlTRWbzVqQjfo_2rYAjEIjCrr_BX0IUxzLTxRKtJwKwWihDt4oG0NK0fXrvSno12z1OtvC7n08dE3-S5K_AN_rnhI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858315521</pqid></control><display><type>article</type><title>The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Brezavšček, Miha ; Fawzy, Ahmed ; Bächle, Maria ; Tuna, Taskin ; Fischer, Jens ; Att, Wael</creator><creatorcontrib>Brezavšček, Miha ; Fawzy, Ahmed ; Bächle, Maria ; Tuna, Taskin ; Fischer, Jens ; Att, Wael</creatorcontrib><description>Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based materials. Smooth and rough zirconia-based disks and cylindrical implants were treated with UV light for 15 min and subsequently placed in rat femurs. Surface characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vivo histomorphometry revealed that the percentage of bone-implant contact and the amount of bone volume, formed around UV-treated implants, increased by 3-7-fold for smooth surfaces and by 1.4-1.7-fold for rough surfaces compared to non-treated specimens at Weeks 2 and 4 of healing, respectively. A biomechanical test showed that UV treatment accelerated the establishment of bone-zirconia integration and enhanced the strength of the bone-implant interface by two-fold. Additionally, surface characterization of the zirconia disks revealed that UV treatment decreased the amount of surface carbon and converted the hydrophilic status from hydrophobic to superhydrophilic. This study indicates that UV light pretreatment enhances the osteoconductive capacity of zirconia-based materials.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma9120958</identifier><identifier>PMID: 28774080</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Biocompatibility ; Biological activity ; Biomechanics ; Biomedical materials ; Bone surgery ; Contact angle ; Dentistry ; Disks ; Electrons ; Light ; Mechanical properties ; Microscopy ; Orthopedics ; Scanning electron microscopy ; Surface properties ; Surgical implants ; Titanium ; Transplants &amp; implants ; Ultraviolet radiation ; Zirconium dioxide</subject><ispartof>Materials, 2016-11, Vol.9 (12), p.958-958</ispartof><rights>Copyright MDPI AG 2016</rights><rights>2016 by the authors. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393</citedby><cites>FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393</cites><orcidid>0000-0003-1924-071X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1858315521/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1858315521?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28774080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brezavšček, Miha</creatorcontrib><creatorcontrib>Fawzy, Ahmed</creatorcontrib><creatorcontrib>Bächle, Maria</creatorcontrib><creatorcontrib>Tuna, Taskin</creatorcontrib><creatorcontrib>Fischer, Jens</creatorcontrib><creatorcontrib>Att, Wael</creatorcontrib><title>The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based materials. Smooth and rough zirconia-based disks and cylindrical implants were treated with UV light for 15 min and subsequently placed in rat femurs. Surface characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vivo histomorphometry revealed that the percentage of bone-implant contact and the amount of bone volume, formed around UV-treated implants, increased by 3-7-fold for smooth surfaces and by 1.4-1.7-fold for rough surfaces compared to non-treated specimens at Weeks 2 and 4 of healing, respectively. A biomechanical test showed that UV treatment accelerated the establishment of bone-zirconia integration and enhanced the strength of the bone-implant interface by two-fold. Additionally, surface characterization of the zirconia disks revealed that UV treatment decreased the amount of surface carbon and converted the hydrophilic status from hydrophobic to superhydrophilic. This study indicates that UV light pretreatment enhances the osteoconductive capacity of zirconia-based materials.</description><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Biomechanics</subject><subject>Biomedical materials</subject><subject>Bone surgery</subject><subject>Contact angle</subject><subject>Dentistry</subject><subject>Disks</subject><subject>Electrons</subject><subject>Light</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Orthopedics</subject><subject>Scanning electron microscopy</subject><subject>Surface properties</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Transplants &amp; implants</subject><subject>Ultraviolet radiation</subject><subject>Zirconium dioxide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqFkU9LJDEQxcOysop62C8gDV7WQ7uVpDPpXAQd_AcuXkYPewmVdFoj050xSQt-eyO6g3rZulSF9-NRlUfITwqHnCv4PaCiDJRov5EtqtSspqppvn-YN8luSg9QinPaMvWDbLJWygZa2CK3i3tXnfa9s7kKfXVzWy2iwzy4sbzHKhf1OmUXbBi7yWb_5Ko5rtD6_PzK__WxKB7rE0yuq_5gdtHjMu2Qjb40t_vet8nN2eliflFfXZ9fzo-vaiuA5ZoZ6BGVksxaajhHaoyVnCljZNMZ2fWWoQDToBQdBQFdJ5AbIYWk1HLFt8nRm-9qMoPrbFk74lKvoh8wPuuAXn9WRn-v78KTFo2QwFgx-PVuEMPj5FLWg0_WLZc4ujAlTRWbzVqQjfo_2rYAjEIjCrr_BX0IUxzLTxRKtJwKwWihDt4oG0NK0fXrvSno12z1OtvC7n08dE3-S5K_AN_rnhI</recordid><startdate>20161124</startdate><enddate>20161124</enddate><creator>Brezavšček, Miha</creator><creator>Fawzy, Ahmed</creator><creator>Bächle, Maria</creator><creator>Tuna, Taskin</creator><creator>Fischer, Jens</creator><creator>Att, Wael</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1924-071X</orcidid></search><sort><creationdate>20161124</creationdate><title>The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials</title><author>Brezavšček, Miha ; Fawzy, Ahmed ; Bächle, Maria ; Tuna, Taskin ; Fischer, Jens ; Att, Wael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Biomechanics</topic><topic>Biomedical materials</topic><topic>Bone surgery</topic><topic>Contact angle</topic><topic>Dentistry</topic><topic>Disks</topic><topic>Electrons</topic><topic>Light</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Orthopedics</topic><topic>Scanning electron microscopy</topic><topic>Surface properties</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Transplants &amp; implants</topic><topic>Ultraviolet radiation</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brezavšček, Miha</creatorcontrib><creatorcontrib>Fawzy, Ahmed</creatorcontrib><creatorcontrib>Bächle, Maria</creatorcontrib><creatorcontrib>Tuna, Taskin</creatorcontrib><creatorcontrib>Fischer, Jens</creatorcontrib><creatorcontrib>Att, Wael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brezavšček, Miha</au><au>Fawzy, Ahmed</au><au>Bächle, Maria</au><au>Tuna, Taskin</au><au>Fischer, Jens</au><au>Att, Wael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2016-11-24</date><risdate>2016</risdate><volume>9</volume><issue>12</issue><spage>958</spage><epage>958</epage><pages>958-958</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Improvements in the bioactivity of zirconia implants for accelerated healing and reduced morbidity have been of continuing interest in the fields of dentistry and orthopedic surgery. The aim of the present study was to examine whether UV treatment increases the osteoconductivity of zirconia-based materials. Smooth and rough zirconia-based disks and cylindrical implants were treated with UV light for 15 min and subsequently placed in rat femurs. Surface characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurements. In vivo histomorphometry revealed that the percentage of bone-implant contact and the amount of bone volume, formed around UV-treated implants, increased by 3-7-fold for smooth surfaces and by 1.4-1.7-fold for rough surfaces compared to non-treated specimens at Weeks 2 and 4 of healing, respectively. A biomechanical test showed that UV treatment accelerated the establishment of bone-zirconia integration and enhanced the strength of the bone-implant interface by two-fold. Additionally, surface characterization of the zirconia disks revealed that UV treatment decreased the amount of surface carbon and converted the hydrophilic status from hydrophobic to superhydrophilic. This study indicates that UV light pretreatment enhances the osteoconductive capacity of zirconia-based materials.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28774080</pmid><doi>10.3390/ma9120958</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1924-071X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2016-11, Vol.9 (12), p.958-958
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5457022
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biocompatibility
Biological activity
Biomechanics
Biomedical materials
Bone surgery
Contact angle
Dentistry
Disks
Electrons
Light
Mechanical properties
Microscopy
Orthopedics
Scanning electron microscopy
Surface properties
Surgical implants
Titanium
Transplants & implants
Ultraviolet radiation
Zirconium dioxide
title The Effect of UV Treatment on the Osteoconductive Capacity of Zirconia-Based Materials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20UV%20Treatment%20on%20the%20Osteoconductive%20Capacity%20of%20Zirconia-Based%20Materials&rft.jtitle=Materials&rft.au=Brezav%C5%A1%C4%8Dek,%20Miha&rft.date=2016-11-24&rft.volume=9&rft.issue=12&rft.spage=958&rft.epage=958&rft.pages=958-958&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma9120958&rft_dat=%3Cproquest_pubme%3E1880021045%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c502t-2b0faa9972cc1b33a1bbc7329bb74db7dfc2a50b4a75d1050dd5a3b575711c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1858315521&rft_id=info:pmid/28774080&rfr_iscdi=true