Loading…

Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor

Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We de...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-01, Vol.139 (2), p.1011-1018
Main Authors: Gagarinov, Ivan A, Li, Tiehai, Toraño, Javier Sastre, Caval, Tomislav, Srivastava, Apoorva D, Kruijtzer, John A. W, Heck, Albert J. R, Boons, Geert-Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3
cites cdi_FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3
container_end_page 1018
container_issue 2
container_start_page 1011
container_title Journal of the American Chemical Society
container_volume 139
creator Gagarinov, Ivan A
Li, Tiehai
Toraño, Javier Sastre
Caval, Tomislav
Srivastava, Apoorva D
Kruijtzer, John A. W
Heck, Albert J. R
Boons, Geert-Jan
description Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα­(1,4)-GlcNAc and Manβ­(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.
doi_str_mv 10.1021/jacs.6b12080
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1851694023</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3</originalsourceid><addsrcrecordid>eNptkc1q3DAUhUVpaCZpd10XLbuIU0m2ZXlTmAz5g5B2MV0LWb7qeLAkR7IDk1VeIa-YJ4mGmaYpdHUR5-i7h3sQ-kzJKSWMflsrHU95QxkR5B2a0ZKRrKSMv0czQgjLKsHzQ3QU4zo9CyboB3TIRFJ4RWbocbEC68E9bKwaO43nwxC80itsfMDjCvDPAIMKSfMOe4PncWMtjCFZz7rnx6cTvAy7qVyLl0lR2dyN4JwKG3yblMt-o5WL2ARvscILb21CJayeQvThIzowqo_waT-P0a-L8-XiKrv5cXm9mN9kqhD5mLU1a5vKEKE0VAWwikHLeVO3xNRtK3iTG0NKkYOpNRPccCY0FDWryzLPG4D8GH3fcYepsdBqcClqL4fQ2ZRUetXJfxXXreRvfy_LgtOC0AT4ugcEfzdBHKXtooa-Vw78FCUVJeV1QVierCc7qw4-xgDmdQ0lclua3JYm96Ul-5e30V7Nf1r6u3r7a-2n4NKl_s96AchnpYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1851694023</pqid></control><display><type>article</type><title>Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gagarinov, Ivan A ; Li, Tiehai ; Toraño, Javier Sastre ; Caval, Tomislav ; Srivastava, Apoorva D ; Kruijtzer, John A. W ; Heck, Albert J. R ; Boons, Geert-Jan</creator><creatorcontrib>Gagarinov, Ivan A ; Li, Tiehai ; Toraño, Javier Sastre ; Caval, Tomislav ; Srivastava, Apoorva D ; Kruijtzer, John A. W ; Heck, Albert J. R ; Boons, Geert-Jan</creatorcontrib><description>Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα­(1,4)-GlcNAc and Manβ­(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.6b12080</identifier><identifier>PMID: 28002670</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Glycoside Hydrolases - chemical synthesis ; Glycoside Hydrolases - chemistry ; Humans ; Polysaccharides - chemistry</subject><ispartof>Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.1011-1018</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3</citedby><cites>FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3</cites><orcidid>0000-0002-2405-4404 ; 0000-0003-3111-5954</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28002670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gagarinov, Ivan A</creatorcontrib><creatorcontrib>Li, Tiehai</creatorcontrib><creatorcontrib>Toraño, Javier Sastre</creatorcontrib><creatorcontrib>Caval, Tomislav</creatorcontrib><creatorcontrib>Srivastava, Apoorva D</creatorcontrib><creatorcontrib>Kruijtzer, John A. W</creatorcontrib><creatorcontrib>Heck, Albert J. R</creatorcontrib><creatorcontrib>Boons, Geert-Jan</creatorcontrib><title>Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα­(1,4)-GlcNAc and Manβ­(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.</description><subject>Animals</subject><subject>Glycoside Hydrolases - chemical synthesis</subject><subject>Glycoside Hydrolases - chemistry</subject><subject>Humans</subject><subject>Polysaccharides - chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkc1q3DAUhUVpaCZpd10XLbuIU0m2ZXlTmAz5g5B2MV0LWb7qeLAkR7IDk1VeIa-YJ4mGmaYpdHUR5-i7h3sQ-kzJKSWMflsrHU95QxkR5B2a0ZKRrKSMv0czQgjLKsHzQ3QU4zo9CyboB3TIRFJ4RWbocbEC68E9bKwaO43nwxC80itsfMDjCvDPAIMKSfMOe4PncWMtjCFZz7rnx6cTvAy7qVyLl0lR2dyN4JwKG3yblMt-o5WL2ARvscILb21CJayeQvThIzowqo_waT-P0a-L8-XiKrv5cXm9mN9kqhD5mLU1a5vKEKE0VAWwikHLeVO3xNRtK3iTG0NKkYOpNRPccCY0FDWryzLPG4D8GH3fcYepsdBqcClqL4fQ2ZRUetXJfxXXreRvfy_LgtOC0AT4ugcEfzdBHKXtooa-Vw78FCUVJeV1QVierCc7qw4-xgDmdQ0lclua3JYm96Ul-5e30V7Nf1r6u3r7a-2n4NKl_s96AchnpYU</recordid><startdate>20170118</startdate><enddate>20170118</enddate><creator>Gagarinov, Ivan A</creator><creator>Li, Tiehai</creator><creator>Toraño, Javier Sastre</creator><creator>Caval, Tomislav</creator><creator>Srivastava, Apoorva D</creator><creator>Kruijtzer, John A. W</creator><creator>Heck, Albert J. R</creator><creator>Boons, Geert-Jan</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2405-4404</orcidid><orcidid>https://orcid.org/0000-0003-3111-5954</orcidid></search><sort><creationdate>20170118</creationdate><title>Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor</title><author>Gagarinov, Ivan A ; Li, Tiehai ; Toraño, Javier Sastre ; Caval, Tomislav ; Srivastava, Apoorva D ; Kruijtzer, John A. W ; Heck, Albert J. R ; Boons, Geert-Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Glycoside Hydrolases - chemical synthesis</topic><topic>Glycoside Hydrolases - chemistry</topic><topic>Humans</topic><topic>Polysaccharides - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gagarinov, Ivan A</creatorcontrib><creatorcontrib>Li, Tiehai</creatorcontrib><creatorcontrib>Toraño, Javier Sastre</creatorcontrib><creatorcontrib>Caval, Tomislav</creatorcontrib><creatorcontrib>Srivastava, Apoorva D</creatorcontrib><creatorcontrib>Kruijtzer, John A. W</creatorcontrib><creatorcontrib>Heck, Albert J. R</creatorcontrib><creatorcontrib>Boons, Geert-Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagarinov, Ivan A</au><au>Li, Tiehai</au><au>Toraño, Javier Sastre</au><au>Caval, Tomislav</au><au>Srivastava, Apoorva D</au><au>Kruijtzer, John A. W</au><au>Heck, Albert J. R</au><au>Boons, Geert-Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-01-18</date><risdate>2017</risdate><volume>139</volume><issue>2</issue><spage>1011</spage><epage>1018</epage><pages>1011-1018</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Progress in glycoscience is hampered by a lack of well-defined complex oligosaccharide standards that are needed to fabricate the next generation of microarrays, to develop analytical protocols to determine exact structures of isolated glycans, and to elucidate pathways of glycan biosynthesis. We describe here a chemoenzymatic methodology that makes it possible, for the first time, to prepare any bi-, tri-, and tetra-antennary asymmetric N-glycan from a single precursor. It is based on the chemical synthesis of a tetra-antennary glycan that has N-acetylglucosamine (GlcNAc), N-acetyllactosamine (LacNAc), and unnatural Galα­(1,4)-GlcNAc and Manβ­(1,4)-GlcNAc appendages. Mammalian glycosyltransferases recognize only the terminal LacNAc moiety as a substrate, and thus this structure can be uniquely extended. Next, the β-GlcNAc terminating antenna can be converted into LacNAc by galactosylation and can then be enzymatically modified into a complex structure. The unnatural α-Gal and β-Man terminating antennae can sequentially be decaged by an appropriate glycosidase to liberate a terminal β-GlcNAc moiety, which can be converted into LacNAc and then elaborated by a panel of glycosyltransferases. Asymmetric bi- and triantennary glycans could be obtained by removal of a terminal β-GlcNAc moiety by treatment with β-N-acetylglucosaminidase and selective extension of the other arms. The power of the methodology is demonstrated by the preparation of an asymmetric tetra-antennary N-glycan found in human breast carcinoma tissue, which represents the most complex N-glycan ever synthesized. Multistage mass spectrometry of the two isomeric triantennary glycans uncovered unique fragment ions that will facilitate identification of exact structures of glycans in biological samples.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28002670</pmid><doi>10.1021/jacs.6b12080</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2405-4404</orcidid><orcidid>https://orcid.org/0000-0003-3111-5954</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-01, Vol.139 (2), p.1011-1018
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5461401
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Animals
Glycoside Hydrolases - chemical synthesis
Glycoside Hydrolases - chemistry
Humans
Polysaccharides - chemistry
title Chemoenzymatic Approach for the Preparation of Asymmetric Bi‑, Tri‑, and Tetra-Antennary N‑Glycans from a Common Precursor
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemoenzymatic%20Approach%20for%20the%20Preparation%20of%20Asymmetric%20Bi%E2%80%91,%20Tri%E2%80%91,%20and%20Tetra-Antennary%20N%E2%80%91Glycans%20from%20a%20Common%20Precursor&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Gagarinov,%20Ivan%20A&rft.date=2017-01-18&rft.volume=139&rft.issue=2&rft.spage=1011&rft.epage=1018&rft.pages=1011-1018&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.6b12080&rft_dat=%3Cproquest_pubme%3E1851694023%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a483t-d92db7f08ace74e272ed66b9d0f9dd86b3ff0583ef9c286f628ce49295533bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1851694023&rft_id=info:pmid/28002670&rfr_iscdi=true