Loading…
Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes
The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and dev...
Saved in:
Published in: | Plant physiology (Bethesda) 2017-06, Vol.174 (2), p.904-921 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33 |
---|---|
cites | |
container_end_page | 921 |
container_issue | 2 |
container_start_page | 904 |
container_title | Plant physiology (Bethesda) |
container_volume | 174 |
creator | Johnson, Kim L. Cassin, Andrew M. Lonsdale, Andrew Wong, Gane Ka-Shu Soltis, Douglas E. Miles, Nicholas W. Melkonian, Michael Melkonian, Barbara Deyholos, Michael K. Leebens-Mack, James Rothfels, Carl J. Stevenson, Dennis W. Graham, Sean W. Wang, Xumin Wu, Shuangxiu Pires, J. Chris Edger, Patrick P. Carpenter, Eric J. Bacic, Antony Doblin, Monika S. Schultz, Carolyn J. |
description | The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots. |
doi_str_mv | 10.1104/pp.17.00295 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26373543</jstor_id><sourcerecordid>26373543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</originalsourceid><addsrcrecordid>eNpVkd1rFTEQxYMo9lp98lnJoyB7O_nazb4IUmpbKFikPodsku1N2U3WJLd4_3tTbz-fZpj5ceYMB6GPBNaEAD9aljXp1gC0F6_QighGGyq4fI1WALUHKfsD9C7nGwAgjPC36IBKztuWtSukzkP215uSsQ8l4rJx-OQ2TtviY8BxxGc7m-Lf3ZLi5INrfnmzwafTzsQ6Kc6HjMcUZ0yqNr6cdCj4KumQTfJLibPL79GbUU_Zfbivh-j3j5Or47Pm4ufp-fH3i8ZwYKURglopxUAF0Zb3ozTWCgvd4MD0uutBd5SxkbWm67QdBNSJJUNPORjrHGOH6Nted9kOs7PGhZL0pJbkZ512KmqvXm6C36jreKsEbymwO4Ev9wIp_tm6XNTss3FT_cnFbVZE9rR6IFxW9OseNSnmnNz4eIaAuotELYsinfofSaU_P3f2yD5kUIFPe-Aml5ie9i3rmOCM_QNHV5LH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892723148</pqid></control><display><type>article</type><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</creator><creatorcontrib>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</creatorcontrib><description>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.00295</identifier><identifier>PMID: 28446636</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Breakthrough Technologies ; Evolution, Molecular ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Glycosylphosphatidylinositols ; Hydroxyproline - metabolism ; Likelihood Functions ; Mucoproteins - metabolism ; Phylogeny ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants - genetics ; Time Factors ; Transcriptome - genetics</subject><ispartof>Plant physiology (Bethesda), 2017-06, Vol.174 (2), p.904-921</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</citedby><orcidid>0000-0002-2986-7076 ; 0000-0001-6108-5560 ; 0000-0003-4205-3891 ; 0000-0002-8921-2725 ; 0000-0002-0292-2880 ; 0000-0001-8209-5231 ; 0000-0002-6605-1770 ; 0000-0003-2026-9122 ; 0000-0003-0302-8909 ; 0000-0003-4811-2231 ; 0000-0001-9682-2639 ; 0000-0001-6917-7742 ; 0000-0001-7483-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26373543$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26373543$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,58227,58460</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28446636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Kim L.</creatorcontrib><creatorcontrib>Cassin, Andrew M.</creatorcontrib><creatorcontrib>Lonsdale, Andrew</creatorcontrib><creatorcontrib>Wong, Gane Ka-Shu</creatorcontrib><creatorcontrib>Soltis, Douglas E.</creatorcontrib><creatorcontrib>Miles, Nicholas W.</creatorcontrib><creatorcontrib>Melkonian, Michael</creatorcontrib><creatorcontrib>Melkonian, Barbara</creatorcontrib><creatorcontrib>Deyholos, Michael K.</creatorcontrib><creatorcontrib>Leebens-Mack, James</creatorcontrib><creatorcontrib>Rothfels, Carl J.</creatorcontrib><creatorcontrib>Stevenson, Dennis W.</creatorcontrib><creatorcontrib>Graham, Sean W.</creatorcontrib><creatorcontrib>Wang, Xumin</creatorcontrib><creatorcontrib>Wu, Shuangxiu</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Edger, Patrick P.</creatorcontrib><creatorcontrib>Carpenter, Eric J.</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Doblin, Monika S.</creatorcontrib><creatorcontrib>Schultz, Carolyn J.</creatorcontrib><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Breakthrough Technologies</subject><subject>Evolution, Molecular</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylphosphatidylinositols</subject><subject>Hydroxyproline - metabolism</subject><subject>Likelihood Functions</subject><subject>Mucoproteins - metabolism</subject><subject>Phylogeny</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - genetics</subject><subject>Time Factors</subject><subject>Transcriptome - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkd1rFTEQxYMo9lp98lnJoyB7O_nazb4IUmpbKFikPodsku1N2U3WJLd4_3tTbz-fZpj5ceYMB6GPBNaEAD9aljXp1gC0F6_QighGGyq4fI1WALUHKfsD9C7nGwAgjPC36IBKztuWtSukzkP215uSsQ8l4rJx-OQ2TtviY8BxxGc7m-Lf3ZLi5INrfnmzwafTzsQ6Kc6HjMcUZ0yqNr6cdCj4KumQTfJLibPL79GbUU_Zfbivh-j3j5Or47Pm4ufp-fH3i8ZwYKURglopxUAF0Zb3ozTWCgvd4MD0uutBd5SxkbWm67QdBNSJJUNPORjrHGOH6Nted9kOs7PGhZL0pJbkZ512KmqvXm6C36jreKsEbymwO4Ev9wIp_tm6XNTss3FT_cnFbVZE9rR6IFxW9OseNSnmnNz4eIaAuotELYsinfofSaU_P3f2yD5kUIFPe-Aml5ie9i3rmOCM_QNHV5LH</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Johnson, Kim L.</creator><creator>Cassin, Andrew M.</creator><creator>Lonsdale, Andrew</creator><creator>Wong, Gane Ka-Shu</creator><creator>Soltis, Douglas E.</creator><creator>Miles, Nicholas W.</creator><creator>Melkonian, Michael</creator><creator>Melkonian, Barbara</creator><creator>Deyholos, Michael K.</creator><creator>Leebens-Mack, James</creator><creator>Rothfels, Carl J.</creator><creator>Stevenson, Dennis W.</creator><creator>Graham, Sean W.</creator><creator>Wang, Xumin</creator><creator>Wu, Shuangxiu</creator><creator>Pires, J. Chris</creator><creator>Edger, Patrick P.</creator><creator>Carpenter, Eric J.</creator><creator>Bacic, Antony</creator><creator>Doblin, Monika S.</creator><creator>Schultz, Carolyn J.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2986-7076</orcidid><orcidid>https://orcid.org/0000-0001-6108-5560</orcidid><orcidid>https://orcid.org/0000-0003-4205-3891</orcidid><orcidid>https://orcid.org/0000-0002-8921-2725</orcidid><orcidid>https://orcid.org/0000-0002-0292-2880</orcidid><orcidid>https://orcid.org/0000-0001-8209-5231</orcidid><orcidid>https://orcid.org/0000-0002-6605-1770</orcidid><orcidid>https://orcid.org/0000-0003-2026-9122</orcidid><orcidid>https://orcid.org/0000-0003-0302-8909</orcidid><orcidid>https://orcid.org/0000-0003-4811-2231</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6917-7742</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid></search><sort><creationdate>20170601</creationdate><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><author>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Breakthrough Technologies</topic><topic>Evolution, Molecular</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylphosphatidylinositols</topic><topic>Hydroxyproline - metabolism</topic><topic>Likelihood Functions</topic><topic>Mucoproteins - metabolism</topic><topic>Phylogeny</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - genetics</topic><topic>Time Factors</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Kim L.</creatorcontrib><creatorcontrib>Cassin, Andrew M.</creatorcontrib><creatorcontrib>Lonsdale, Andrew</creatorcontrib><creatorcontrib>Wong, Gane Ka-Shu</creatorcontrib><creatorcontrib>Soltis, Douglas E.</creatorcontrib><creatorcontrib>Miles, Nicholas W.</creatorcontrib><creatorcontrib>Melkonian, Michael</creatorcontrib><creatorcontrib>Melkonian, Barbara</creatorcontrib><creatorcontrib>Deyholos, Michael K.</creatorcontrib><creatorcontrib>Leebens-Mack, James</creatorcontrib><creatorcontrib>Rothfels, Carl J.</creatorcontrib><creatorcontrib>Stevenson, Dennis W.</creatorcontrib><creatorcontrib>Graham, Sean W.</creatorcontrib><creatorcontrib>Wang, Xumin</creatorcontrib><creatorcontrib>Wu, Shuangxiu</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Edger, Patrick P.</creatorcontrib><creatorcontrib>Carpenter, Eric J.</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Doblin, Monika S.</creatorcontrib><creatorcontrib>Schultz, Carolyn J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Kim L.</au><au>Cassin, Andrew M.</au><au>Lonsdale, Andrew</au><au>Wong, Gane Ka-Shu</au><au>Soltis, Douglas E.</au><au>Miles, Nicholas W.</au><au>Melkonian, Michael</au><au>Melkonian, Barbara</au><au>Deyholos, Michael K.</au><au>Leebens-Mack, James</au><au>Rothfels, Carl J.</au><au>Stevenson, Dennis W.</au><au>Graham, Sean W.</au><au>Wang, Xumin</au><au>Wu, Shuangxiu</au><au>Pires, J. Chris</au><au>Edger, Patrick P.</au><au>Carpenter, Eric J.</au><au>Bacic, Antony</au><au>Doblin, Monika S.</au><au>Schultz, Carolyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>174</volume><issue>2</issue><spage>904</spage><epage>921</epage><pages>904-921</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28446636</pmid><doi>10.1104/pp.17.00295</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2986-7076</orcidid><orcidid>https://orcid.org/0000-0001-6108-5560</orcidid><orcidid>https://orcid.org/0000-0003-4205-3891</orcidid><orcidid>https://orcid.org/0000-0002-8921-2725</orcidid><orcidid>https://orcid.org/0000-0002-0292-2880</orcidid><orcidid>https://orcid.org/0000-0001-8209-5231</orcidid><orcidid>https://orcid.org/0000-0002-6605-1770</orcidid><orcidid>https://orcid.org/0000-0003-2026-9122</orcidid><orcidid>https://orcid.org/0000-0003-0302-8909</orcidid><orcidid>https://orcid.org/0000-0003-4811-2231</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6917-7742</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2017-06, Vol.174 (2), p.904-921 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462033 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Amino Acid Motifs Amino Acid Sequence Breakthrough Technologies Evolution, Molecular Glycoproteins - chemistry Glycoproteins - genetics Glycoproteins - metabolism Glycosylphosphatidylinositols Hydroxyproline - metabolism Likelihood Functions Mucoproteins - metabolism Phylogeny Plant Proteins - chemistry Plant Proteins - genetics Plant Proteins - metabolism Plants - genetics Time Factors Transcriptome - genetics |
title | Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Evolution%20of%20Hydroxyproline-Rich%20Glycoproteins%20from%201000%20Plant%20Transcriptomes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Johnson,%20Kim%20L.&rft.date=2017-06-01&rft.volume=174&rft.issue=2&rft.spage=904&rft.epage=921&rft.pages=904-921&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.00295&rft_dat=%3Cjstor_pubme%3E26373543%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1892723148&rft_id=info:pmid/28446636&rft_jstor_id=26373543&rfr_iscdi=true |