Loading…

Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes

The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and dev...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2017-06, Vol.174 (2), p.904-921
Main Authors: Johnson, Kim L., Cassin, Andrew M., Lonsdale, Andrew, Wong, Gane Ka-Shu, Soltis, Douglas E., Miles, Nicholas W., Melkonian, Michael, Melkonian, Barbara, Deyholos, Michael K., Leebens-Mack, James, Rothfels, Carl J., Stevenson, Dennis W., Graham, Sean W., Wang, Xumin, Wu, Shuangxiu, Pires, J. Chris, Edger, Patrick P., Carpenter, Eric J., Bacic, Antony, Doblin, Monika S., Schultz, Carolyn J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33
cites
container_end_page 921
container_issue 2
container_start_page 904
container_title Plant physiology (Bethesda)
container_volume 174
creator Johnson, Kim L.
Cassin, Andrew M.
Lonsdale, Andrew
Wong, Gane Ka-Shu
Soltis, Douglas E.
Miles, Nicholas W.
Melkonian, Michael
Melkonian, Barbara
Deyholos, Michael K.
Leebens-Mack, James
Rothfels, Carl J.
Stevenson, Dennis W.
Graham, Sean W.
Wang, Xumin
Wu, Shuangxiu
Pires, J. Chris
Edger, Patrick P.
Carpenter, Eric J.
Bacic, Antony
Doblin, Monika S.
Schultz, Carolyn J.
description The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.
doi_str_mv 10.1104/pp.17.00295
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26373543</jstor_id><sourcerecordid>26373543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</originalsourceid><addsrcrecordid>eNpVkd1rFTEQxYMo9lp98lnJoyB7O_nazb4IUmpbKFikPodsku1N2U3WJLd4_3tTbz-fZpj5ceYMB6GPBNaEAD9aljXp1gC0F6_QighGGyq4fI1WALUHKfsD9C7nGwAgjPC36IBKztuWtSukzkP215uSsQ8l4rJx-OQ2TtviY8BxxGc7m-Lf3ZLi5INrfnmzwafTzsQ6Kc6HjMcUZ0yqNr6cdCj4KumQTfJLibPL79GbUU_Zfbivh-j3j5Or47Pm4ufp-fH3i8ZwYKURglopxUAF0Zb3ozTWCgvd4MD0uutBd5SxkbWm67QdBNSJJUNPORjrHGOH6Nted9kOs7PGhZL0pJbkZ512KmqvXm6C36jreKsEbymwO4Ev9wIp_tm6XNTss3FT_cnFbVZE9rR6IFxW9OseNSnmnNz4eIaAuotELYsinfofSaU_P3f2yD5kUIFPe-Aml5ie9i3rmOCM_QNHV5LH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1892723148</pqid></control><display><type>article</type><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</creator><creatorcontrib>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</creatorcontrib><description>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.17.00295</identifier><identifier>PMID: 28446636</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Breakthrough Technologies ; Evolution, Molecular ; Glycoproteins - chemistry ; Glycoproteins - genetics ; Glycoproteins - metabolism ; Glycosylphosphatidylinositols ; Hydroxyproline - metabolism ; Likelihood Functions ; Mucoproteins - metabolism ; Phylogeny ; Plant Proteins - chemistry ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants - genetics ; Time Factors ; Transcriptome - genetics</subject><ispartof>Plant physiology (Bethesda), 2017-06, Vol.174 (2), p.904-921</ispartof><rights>2017 American Society of Plant Biologists</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved.</rights><rights>2017 American Society of Plant Biologists. All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</citedby><orcidid>0000-0002-2986-7076 ; 0000-0001-6108-5560 ; 0000-0003-4205-3891 ; 0000-0002-8921-2725 ; 0000-0002-0292-2880 ; 0000-0001-8209-5231 ; 0000-0002-6605-1770 ; 0000-0003-2026-9122 ; 0000-0003-0302-8909 ; 0000-0003-4811-2231 ; 0000-0001-9682-2639 ; 0000-0001-6917-7742 ; 0000-0001-7483-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26373543$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26373543$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,778,782,883,27913,27914,58227,58460</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28446636$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Johnson, Kim L.</creatorcontrib><creatorcontrib>Cassin, Andrew M.</creatorcontrib><creatorcontrib>Lonsdale, Andrew</creatorcontrib><creatorcontrib>Wong, Gane Ka-Shu</creatorcontrib><creatorcontrib>Soltis, Douglas E.</creatorcontrib><creatorcontrib>Miles, Nicholas W.</creatorcontrib><creatorcontrib>Melkonian, Michael</creatorcontrib><creatorcontrib>Melkonian, Barbara</creatorcontrib><creatorcontrib>Deyholos, Michael K.</creatorcontrib><creatorcontrib>Leebens-Mack, James</creatorcontrib><creatorcontrib>Rothfels, Carl J.</creatorcontrib><creatorcontrib>Stevenson, Dennis W.</creatorcontrib><creatorcontrib>Graham, Sean W.</creatorcontrib><creatorcontrib>Wang, Xumin</creatorcontrib><creatorcontrib>Wu, Shuangxiu</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Edger, Patrick P.</creatorcontrib><creatorcontrib>Carpenter, Eric J.</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Doblin, Monika S.</creatorcontrib><creatorcontrib>Schultz, Carolyn J.</creatorcontrib><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Breakthrough Technologies</subject><subject>Evolution, Molecular</subject><subject>Glycoproteins - chemistry</subject><subject>Glycoproteins - genetics</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylphosphatidylinositols</subject><subject>Hydroxyproline - metabolism</subject><subject>Likelihood Functions</subject><subject>Mucoproteins - metabolism</subject><subject>Phylogeny</subject><subject>Plant Proteins - chemistry</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants - genetics</subject><subject>Time Factors</subject><subject>Transcriptome - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkd1rFTEQxYMo9lp98lnJoyB7O_nazb4IUmpbKFikPodsku1N2U3WJLd4_3tTbz-fZpj5ceYMB6GPBNaEAD9aljXp1gC0F6_QighGGyq4fI1WALUHKfsD9C7nGwAgjPC36IBKztuWtSukzkP215uSsQ8l4rJx-OQ2TtviY8BxxGc7m-Lf3ZLi5INrfnmzwafTzsQ6Kc6HjMcUZ0yqNr6cdCj4KumQTfJLibPL79GbUU_Zfbivh-j3j5Or47Pm4ufp-fH3i8ZwYKURglopxUAF0Zb3ozTWCgvd4MD0uutBd5SxkbWm67QdBNSJJUNPORjrHGOH6Nted9kOs7PGhZL0pJbkZ512KmqvXm6C36jreKsEbymwO4Ev9wIp_tm6XNTss3FT_cnFbVZE9rR6IFxW9OseNSnmnNz4eIaAuotELYsinfofSaU_P3f2yD5kUIFPe-Aml5ie9i3rmOCM_QNHV5LH</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Johnson, Kim L.</creator><creator>Cassin, Andrew M.</creator><creator>Lonsdale, Andrew</creator><creator>Wong, Gane Ka-Shu</creator><creator>Soltis, Douglas E.</creator><creator>Miles, Nicholas W.</creator><creator>Melkonian, Michael</creator><creator>Melkonian, Barbara</creator><creator>Deyholos, Michael K.</creator><creator>Leebens-Mack, James</creator><creator>Rothfels, Carl J.</creator><creator>Stevenson, Dennis W.</creator><creator>Graham, Sean W.</creator><creator>Wang, Xumin</creator><creator>Wu, Shuangxiu</creator><creator>Pires, J. Chris</creator><creator>Edger, Patrick P.</creator><creator>Carpenter, Eric J.</creator><creator>Bacic, Antony</creator><creator>Doblin, Monika S.</creator><creator>Schultz, Carolyn J.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2986-7076</orcidid><orcidid>https://orcid.org/0000-0001-6108-5560</orcidid><orcidid>https://orcid.org/0000-0003-4205-3891</orcidid><orcidid>https://orcid.org/0000-0002-8921-2725</orcidid><orcidid>https://orcid.org/0000-0002-0292-2880</orcidid><orcidid>https://orcid.org/0000-0001-8209-5231</orcidid><orcidid>https://orcid.org/0000-0002-6605-1770</orcidid><orcidid>https://orcid.org/0000-0003-2026-9122</orcidid><orcidid>https://orcid.org/0000-0003-0302-8909</orcidid><orcidid>https://orcid.org/0000-0003-4811-2231</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6917-7742</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid></search><sort><creationdate>20170601</creationdate><title>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</title><author>Johnson, Kim L. ; Cassin, Andrew M. ; Lonsdale, Andrew ; Wong, Gane Ka-Shu ; Soltis, Douglas E. ; Miles, Nicholas W. ; Melkonian, Michael ; Melkonian, Barbara ; Deyholos, Michael K. ; Leebens-Mack, James ; Rothfels, Carl J. ; Stevenson, Dennis W. ; Graham, Sean W. ; Wang, Xumin ; Wu, Shuangxiu ; Pires, J. Chris ; Edger, Patrick P. ; Carpenter, Eric J. ; Bacic, Antony ; Doblin, Monika S. ; Schultz, Carolyn J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Breakthrough Technologies</topic><topic>Evolution, Molecular</topic><topic>Glycoproteins - chemistry</topic><topic>Glycoproteins - genetics</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylphosphatidylinositols</topic><topic>Hydroxyproline - metabolism</topic><topic>Likelihood Functions</topic><topic>Mucoproteins - metabolism</topic><topic>Phylogeny</topic><topic>Plant Proteins - chemistry</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants - genetics</topic><topic>Time Factors</topic><topic>Transcriptome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Kim L.</creatorcontrib><creatorcontrib>Cassin, Andrew M.</creatorcontrib><creatorcontrib>Lonsdale, Andrew</creatorcontrib><creatorcontrib>Wong, Gane Ka-Shu</creatorcontrib><creatorcontrib>Soltis, Douglas E.</creatorcontrib><creatorcontrib>Miles, Nicholas W.</creatorcontrib><creatorcontrib>Melkonian, Michael</creatorcontrib><creatorcontrib>Melkonian, Barbara</creatorcontrib><creatorcontrib>Deyholos, Michael K.</creatorcontrib><creatorcontrib>Leebens-Mack, James</creatorcontrib><creatorcontrib>Rothfels, Carl J.</creatorcontrib><creatorcontrib>Stevenson, Dennis W.</creatorcontrib><creatorcontrib>Graham, Sean W.</creatorcontrib><creatorcontrib>Wang, Xumin</creatorcontrib><creatorcontrib>Wu, Shuangxiu</creatorcontrib><creatorcontrib>Pires, J. Chris</creatorcontrib><creatorcontrib>Edger, Patrick P.</creatorcontrib><creatorcontrib>Carpenter, Eric J.</creatorcontrib><creatorcontrib>Bacic, Antony</creatorcontrib><creatorcontrib>Doblin, Monika S.</creatorcontrib><creatorcontrib>Schultz, Carolyn J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Kim L.</au><au>Cassin, Andrew M.</au><au>Lonsdale, Andrew</au><au>Wong, Gane Ka-Shu</au><au>Soltis, Douglas E.</au><au>Miles, Nicholas W.</au><au>Melkonian, Michael</au><au>Melkonian, Barbara</au><au>Deyholos, Michael K.</au><au>Leebens-Mack, James</au><au>Rothfels, Carl J.</au><au>Stevenson, Dennis W.</au><au>Graham, Sean W.</au><au>Wang, Xumin</au><au>Wu, Shuangxiu</au><au>Pires, J. Chris</au><au>Edger, Patrick P.</au><au>Carpenter, Eric J.</au><au>Bacic, Antony</au><au>Doblin, Monika S.</au><au>Schultz, Carolyn J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>174</volume><issue>2</issue><spage>904</spage><epage>921</epage><pages>904-921</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>The carbohydrate-rich cell walls of land plants and algae have been the focus of much interest given the value of cell wall-based products to our current and future economies. Hydroxyproline-rich glycoproteins (HRGPs), a major group of wall glycoproteins, play important roles in plant growth and development, yet little is known about how they have evolved in parallel with the polysaccharide components of walls. We investigate the origins and evolution of the HRGP superfamily, which is commonly divided into three major multigene families: the arabinogalactan proteins (AGPs), extensins (EXTs), and proline-rich proteins. Using motif and amino acid bias, a newly developed bioinformatics pipeline, we identified HRGPs in sequences from the 1000 Plants transcriptome project (www.onekp.com). Our analyses provide new insights into the evolution of HRGPs across major evolutionary milestones, including the transition to land and the early radiation of angiosperms. Significantly, data mining reveals the origin of glycosylphosphatidylinositol (GPI)-anchored AGPs in green algae and a 3- to 4-fold increase in GPI-AGPs in liverworts and mosses. The first detection of cross-linking (CL)-EXTs is observed in bryophytes, which suggests that CL-EXTs arose though the juxtaposition of preexisting SPn EXT glycomotifs with refined Y-based motifs. We also detected the loss of CL-EXT in a few lineages, including the grass family (Poaceae), that have a cell wall composition distinct from other monocots and eudicots. A key challenge in HRGP research is tracking individual HRGPs throughout evolution. Using the 1000 Plants output, we were able to find putative orthologs of Arabidopsis pollen-specific GPI-AGPs in basal eudicots.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28446636</pmid><doi>10.1104/pp.17.00295</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2986-7076</orcidid><orcidid>https://orcid.org/0000-0001-6108-5560</orcidid><orcidid>https://orcid.org/0000-0003-4205-3891</orcidid><orcidid>https://orcid.org/0000-0002-8921-2725</orcidid><orcidid>https://orcid.org/0000-0002-0292-2880</orcidid><orcidid>https://orcid.org/0000-0001-8209-5231</orcidid><orcidid>https://orcid.org/0000-0002-6605-1770</orcidid><orcidid>https://orcid.org/0000-0003-2026-9122</orcidid><orcidid>https://orcid.org/0000-0003-0302-8909</orcidid><orcidid>https://orcid.org/0000-0003-4811-2231</orcidid><orcidid>https://orcid.org/0000-0001-9682-2639</orcidid><orcidid>https://orcid.org/0000-0001-6917-7742</orcidid><orcidid>https://orcid.org/0000-0001-7483-8605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-06, Vol.174 (2), p.904-921
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5462033
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Amino Acid Motifs
Amino Acid Sequence
Breakthrough Technologies
Evolution, Molecular
Glycoproteins - chemistry
Glycoproteins - genetics
Glycoproteins - metabolism
Glycosylphosphatidylinositols
Hydroxyproline - metabolism
Likelihood Functions
Mucoproteins - metabolism
Phylogeny
Plant Proteins - chemistry
Plant Proteins - genetics
Plant Proteins - metabolism
Plants - genetics
Time Factors
Transcriptome - genetics
title Insights into the Evolution of Hydroxyproline-Rich Glycoproteins from 1000 Plant Transcriptomes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insights%20into%20the%20Evolution%20of%20Hydroxyproline-Rich%20Glycoproteins%20from%201000%20Plant%20Transcriptomes&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Johnson,%20Kim%20L.&rft.date=2017-06-01&rft.volume=174&rft.issue=2&rft.spage=904&rft.epage=921&rft.pages=904-921&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.17.00295&rft_dat=%3Cjstor_pubme%3E26373543%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-552d885b251ad49f8cdd5d07be0c9a790a7233f36c77adb5090ad1b9240cdee33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1892723148&rft_id=info:pmid/28446636&rft_jstor_id=26373543&rfr_iscdi=true