Loading…

Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF

The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several o...

Full description

Saved in:
Bibliographic Details
Published in:Molecular oncology 2017-06, Vol.11 (6), p.599-611
Main Authors: Konda, John D., Olivero, Martina, Musiani, Daniele, Lamba, Simona, Di Renzo, Maria F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963
cites cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963
container_end_page 611
container_issue 6
container_start_page 599
container_title Molecular oncology
container_volume 11
creator Konda, John D.
Olivero, Martina
Musiani, Daniele
Lamba, Simona
Di Renzo, Maria F.
description The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents. Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.
doi_str_mv 10.1002/1878-0261.12042
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731950479</galeid><sourcerecordid>A731950479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</originalsourceid><addsrcrecordid>eNqFks9uEzEQxlcIREvhzA1Z4lKkbmp71_8uSGmVNEipiko5W16vN-uyscPaaZVbH6HPyJPgbUqgCAn5MNbMb77RjL4se4vgCEGIjxFnPIeYohHCsMTPsv1d5nn6E1bmjAu0l70K4RpCQgUVL7M9zBHHRQH3szAzKv64uw-t19_AqvfRWAcwA4ezL58xOwIpnKAPwAYQNi62JloNOhNb1YHogTZdF8CtjS3wTvuFcamsdLQ3KlrvgG_A-eTqCEzOppdAuRqcXI6nr7MXjeqCefMYD7Kv08nV6SyfX5x9Oh3Pc00KgnNREIiJ4LXGDcYGaVpWuMY1rzQxUAtVIUJ10xCkDa-pFqRRBcW6qlmFK0GLg-zjVne1rpam1sbFXnVy1dul6jfSKyufVpxt5cLfSFJSVgqeBA4fBXr_fW1ClEsbhpWVM34dJOKUpotCjhL6_i_02q97l9aTGHPBCo6Y-E0tVGekdY1Pc_UgKsesQILA8oEa_YNKrzZLq70zjU35Jw3H2wbd-xB60-x2RFAOPpGDK-TgCvngk9Tx7s_T7PhfxkgA3QK3adbmf3ry_GKOt8o_AZ2KxNs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289738179</pqid></control><display><type>article</type><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><source>PubMed (Medline)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</creator><creatorcontrib>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</creatorcontrib><description>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents. Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</description><identifier>ISSN: 1574-7891</identifier><identifier>EISSN: 1878-0261</identifier><identifier>DOI: 10.1002/1878-0261.12042</identifier><identifier>PMID: 28182330</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Addictions ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; c-Met protein ; Cancer ; Cancer therapies ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Cell activation ; Cell cycle ; Cell Cycle - drug effects ; Cell death ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Proliferation - drug effects ; Chemotherapy ; Colorectal cancer ; Colorectal carcinoma ; Cytotoxicity ; Development and progression ; Epidermal growth factor ; Epidermal growth factor receptors ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gastric cancer ; Gene expression ; Gene Knockdown Techniques ; Genetic aspects ; Heat shock proteins ; HEK293 Cells ; HSP27 Heat-Shock Proteins - genetics ; HSP27 Heat-Shock Proteins - metabolism ; Hsp27 protein ; Humans ; Immunoglobulins ; Kinases ; Lamin B Receptor ; Lung cancer ; Medical prognosis ; Melanoma ; Metastases ; Mitochondria ; Mitochondria - metabolism ; Molecular Chaperones ; Molecular Targeted Therapy ; Mutation ; Neoplasms - drug therapy ; Neoplasms - enzymology ; Neoplasms - pathology ; Oncogene Addiction ; oncogenes ; Prostate ; Proteins ; Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-met - genetics ; Proto-Oncogene Proteins c-met - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; RNA Interference ; RNA, Small Interfering - genetics ; small heat‐shock proteins ; Stem cells ; target therapy ; Tumor cell lines ; Tumors</subject><ispartof>Molecular oncology, 2017-06, Vol.11 (6), p.599-611</ispartof><rights>2017 The Authors. Published by FEBS Press and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</citedby><cites>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289738179/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289738179?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28182330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konda, John D.</creatorcontrib><creatorcontrib>Olivero, Martina</creatorcontrib><creatorcontrib>Musiani, Daniele</creatorcontrib><creatorcontrib>Lamba, Simona</creatorcontrib><creatorcontrib>Di Renzo, Maria F.</creatorcontrib><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><title>Molecular oncology</title><addtitle>Mol Oncol</addtitle><description>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents. Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</description><subject>Addictions</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>c-Met protein</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane Permeability</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Cytotoxicity</subject><subject>Development and progression</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic aspects</subject><subject>Heat shock proteins</subject><subject>HEK293 Cells</subject><subject>HSP27 Heat-Shock Proteins - genetics</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Hsp27 protein</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Kinases</subject><subject>Lamin B Receptor</subject><subject>Lung cancer</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Chaperones</subject><subject>Molecular Targeted Therapy</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - pathology</subject><subject>Oncogene Addiction</subject><subject>oncogenes</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-met - genetics</subject><subject>Proto-Oncogene Proteins c-met - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>small heat‐shock proteins</subject><subject>Stem cells</subject><subject>target therapy</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>1574-7891</issn><issn>1878-0261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFks9uEzEQxlcIREvhzA1Z4lKkbmp71_8uSGmVNEipiko5W16vN-uyscPaaZVbH6HPyJPgbUqgCAn5MNbMb77RjL4se4vgCEGIjxFnPIeYohHCsMTPsv1d5nn6E1bmjAu0l70K4RpCQgUVL7M9zBHHRQH3szAzKv64uw-t19_AqvfRWAcwA4ezL58xOwIpnKAPwAYQNi62JloNOhNb1YHogTZdF8CtjS3wTvuFcamsdLQ3KlrvgG_A-eTqCEzOppdAuRqcXI6nr7MXjeqCefMYD7Kv08nV6SyfX5x9Oh3Pc00KgnNREIiJ4LXGDcYGaVpWuMY1rzQxUAtVIUJ10xCkDa-pFqRRBcW6qlmFK0GLg-zjVne1rpam1sbFXnVy1dul6jfSKyufVpxt5cLfSFJSVgqeBA4fBXr_fW1ClEsbhpWVM34dJOKUpotCjhL6_i_02q97l9aTGHPBCo6Y-E0tVGekdY1Pc_UgKsesQILA8oEa_YNKrzZLq70zjU35Jw3H2wbd-xB60-x2RFAOPpGDK-TgCvngk9Tx7s_T7PhfxkgA3QK3adbmf3ry_GKOt8o_AZ2KxNs</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Konda, John D.</creator><creator>Olivero, Martina</creator><creator>Musiani, Daniele</creator><creator>Lamba, Simona</creator><creator>Di Renzo, Maria F.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><author>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addictions</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>c-Met protein</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane Permeability</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Cytotoxicity</topic><topic>Development and progression</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic aspects</topic><topic>Heat shock proteins</topic><topic>HEK293 Cells</topic><topic>HSP27 Heat-Shock Proteins - genetics</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Hsp27 protein</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Kinases</topic><topic>Lamin B Receptor</topic><topic>Lung cancer</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Chaperones</topic><topic>Molecular Targeted Therapy</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - pathology</topic><topic>Oncogene Addiction</topic><topic>oncogenes</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Proto-Oncogene Proteins c-met - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-met - genetics</topic><topic>Proto-Oncogene Proteins c-met - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>small heat‐shock proteins</topic><topic>Stem cells</topic><topic>target therapy</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konda, John D.</creatorcontrib><creatorcontrib>Olivero, Martina</creatorcontrib><creatorcontrib>Musiani, Daniele</creatorcontrib><creatorcontrib>Lamba, Simona</creatorcontrib><creatorcontrib>Di Renzo, Maria F.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konda, John D.</au><au>Olivero, Martina</au><au>Musiani, Daniele</au><au>Lamba, Simona</au><au>Di Renzo, Maria F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</atitle><jtitle>Molecular oncology</jtitle><addtitle>Mol Oncol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>599</spage><epage>611</epage><pages>599-611</pages><issn>1574-7891</issn><eissn>1878-0261</eissn><abstract>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents. Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>28182330</pmid><doi>10.1002/1878-0261.12042</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-7891
ispartof Molecular oncology, 2017-06, Vol.11 (6), p.599-611
issn 1574-7891
1878-0261
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467498
source PubMed (Medline); Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database
subjects Addictions
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Apoptosis
Apoptosis - drug effects
c-Met protein
Cancer
Cancer therapies
Caspase
Caspase 3 - genetics
Caspase 3 - metabolism
Cell activation
Cell cycle
Cell Cycle - drug effects
Cell death
Cell Line, Tumor
Cell Membrane Permeability
Cell Proliferation - drug effects
Chemotherapy
Colorectal cancer
Colorectal carcinoma
Cytotoxicity
Development and progression
Epidermal growth factor
Epidermal growth factor receptors
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gastric cancer
Gene expression
Gene Knockdown Techniques
Genetic aspects
Heat shock proteins
HEK293 Cells
HSP27 Heat-Shock Proteins - genetics
HSP27 Heat-Shock Proteins - metabolism
Hsp27 protein
Humans
Immunoglobulins
Kinases
Lamin B Receptor
Lung cancer
Medical prognosis
Melanoma
Metastases
Mitochondria
Mitochondria - metabolism
Molecular Chaperones
Molecular Targeted Therapy
Mutation
Neoplasms - drug therapy
Neoplasms - enzymology
Neoplasms - pathology
Oncogene Addiction
oncogenes
Prostate
Proteins
Proto-Oncogene Proteins B-raf - antagonists & inhibitors
Proto-Oncogene Proteins B-raf - genetics
Proto-Oncogene Proteins B-raf - metabolism
Proto-Oncogene Proteins c-bcl-2 - genetics
Proto-Oncogene Proteins c-bcl-2 - metabolism
Proto-Oncogene Proteins c-met - antagonists & inhibitors
Proto-Oncogene Proteins c-met - genetics
Proto-Oncogene Proteins c-met - metabolism
Receptors, Cytoplasmic and Nuclear - genetics
Receptors, Cytoplasmic and Nuclear - metabolism
RNA Interference
RNA, Small Interfering - genetics
small heat‐shock proteins
Stem cells
target therapy
Tumor cell lines
Tumors
title Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%90shock%20protein%2027%20(HSP27,%20HSPB1)%20is%20synthetic%20lethal%20to%20cells%20with%20oncogenic%20activation%20of%20MET,%20EGFR%20and%20BRAF&rft.jtitle=Molecular%20oncology&rft.au=Konda,%20John%20D.&rft.date=2017-06&rft.volume=11&rft.issue=6&rft.spage=599&rft.epage=611&rft.pages=599-611&rft.issn=1574-7891&rft.eissn=1878-0261&rft_id=info:doi/10.1002/1878-0261.12042&rft_dat=%3Cgale_pubme%3EA731950479%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289738179&rft_id=info:pmid/28182330&rft_galeid=A731950479&rfr_iscdi=true