Loading…
Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF
The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several o...
Saved in:
Published in: | Molecular oncology 2017-06, Vol.11 (6), p.599-611 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963 |
---|---|
cites | cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963 |
container_end_page | 611 |
container_issue | 6 |
container_start_page | 599 |
container_title | Molecular oncology |
container_volume | 11 |
creator | Konda, John D. Olivero, Martina Musiani, Daniele Lamba, Simona Di Renzo, Maria F. |
description | The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents.
Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies. |
doi_str_mv | 10.1002/1878-0261.12042 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A731950479</galeid><sourcerecordid>A731950479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</originalsourceid><addsrcrecordid>eNqFks9uEzEQxlcIREvhzA1Z4lKkbmp71_8uSGmVNEipiko5W16vN-uyscPaaZVbH6HPyJPgbUqgCAn5MNbMb77RjL4se4vgCEGIjxFnPIeYohHCsMTPsv1d5nn6E1bmjAu0l70K4RpCQgUVL7M9zBHHRQH3szAzKv64uw-t19_AqvfRWAcwA4ezL58xOwIpnKAPwAYQNi62JloNOhNb1YHogTZdF8CtjS3wTvuFcamsdLQ3KlrvgG_A-eTqCEzOppdAuRqcXI6nr7MXjeqCefMYD7Kv08nV6SyfX5x9Oh3Pc00KgnNREIiJ4LXGDcYGaVpWuMY1rzQxUAtVIUJ10xCkDa-pFqRRBcW6qlmFK0GLg-zjVne1rpam1sbFXnVy1dul6jfSKyufVpxt5cLfSFJSVgqeBA4fBXr_fW1ClEsbhpWVM34dJOKUpotCjhL6_i_02q97l9aTGHPBCo6Y-E0tVGekdY1Pc_UgKsesQILA8oEa_YNKrzZLq70zjU35Jw3H2wbd-xB60-x2RFAOPpGDK-TgCvngk9Tx7s_T7PhfxkgA3QK3adbmf3ry_GKOt8o_AZ2KxNs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2289738179</pqid></control><display><type>article</type><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><source>PubMed (Medline)</source><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</creator><creatorcontrib>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</creatorcontrib><description>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents.
Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</description><identifier>ISSN: 1574-7891</identifier><identifier>EISSN: 1878-0261</identifier><identifier>DOI: 10.1002/1878-0261.12042</identifier><identifier>PMID: 28182330</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Addictions ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Apoptosis ; Apoptosis - drug effects ; c-Met protein ; Cancer ; Cancer therapies ; Caspase ; Caspase 3 - genetics ; Caspase 3 - metabolism ; Cell activation ; Cell cycle ; Cell Cycle - drug effects ; Cell death ; Cell Line, Tumor ; Cell Membrane Permeability ; Cell Proliferation - drug effects ; Chemotherapy ; Colorectal cancer ; Colorectal carcinoma ; Cytotoxicity ; Development and progression ; Epidermal growth factor ; Epidermal growth factor receptors ; ErbB Receptors - antagonists & inhibitors ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gastric cancer ; Gene expression ; Gene Knockdown Techniques ; Genetic aspects ; Heat shock proteins ; HEK293 Cells ; HSP27 Heat-Shock Proteins - genetics ; HSP27 Heat-Shock Proteins - metabolism ; Hsp27 protein ; Humans ; Immunoglobulins ; Kinases ; Lamin B Receptor ; Lung cancer ; Medical prognosis ; Melanoma ; Metastases ; Mitochondria ; Mitochondria - metabolism ; Molecular Chaperones ; Molecular Targeted Therapy ; Mutation ; Neoplasms - drug therapy ; Neoplasms - enzymology ; Neoplasms - pathology ; Oncogene Addiction ; oncogenes ; Prostate ; Proteins ; Proto-Oncogene Proteins B-raf - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - genetics ; Proto-Oncogene Proteins B-raf - metabolism ; Proto-Oncogene Proteins c-bcl-2 - genetics ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Proto-Oncogene Proteins c-met - antagonists & inhibitors ; Proto-Oncogene Proteins c-met - genetics ; Proto-Oncogene Proteins c-met - metabolism ; Receptors, Cytoplasmic and Nuclear - genetics ; Receptors, Cytoplasmic and Nuclear - metabolism ; RNA Interference ; RNA, Small Interfering - genetics ; small heat‐shock proteins ; Stem cells ; target therapy ; Tumor cell lines ; Tumors</subject><ispartof>Molecular oncology, 2017-06, Vol.11 (6), p.599-611</ispartof><rights>2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</citedby><cites>FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2289738179/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2289738179?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,11541,25731,27901,27902,36989,36990,44566,46027,46451,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28182330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Konda, John D.</creatorcontrib><creatorcontrib>Olivero, Martina</creatorcontrib><creatorcontrib>Musiani, Daniele</creatorcontrib><creatorcontrib>Lamba, Simona</creatorcontrib><creatorcontrib>Di Renzo, Maria F.</creatorcontrib><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><title>Molecular oncology</title><addtitle>Mol Oncol</addtitle><description>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents.
Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</description><subject>Addictions</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>c-Met protein</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Caspase</subject><subject>Caspase 3 - genetics</subject><subject>Caspase 3 - metabolism</subject><subject>Cell activation</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane Permeability</subject><subject>Cell Proliferation - drug effects</subject><subject>Chemotherapy</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Cytotoxicity</subject><subject>Development and progression</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>ErbB Receptors - antagonists & inhibitors</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gastric cancer</subject><subject>Gene expression</subject><subject>Gene Knockdown Techniques</subject><subject>Genetic aspects</subject><subject>Heat shock proteins</subject><subject>HEK293 Cells</subject><subject>HSP27 Heat-Shock Proteins - genetics</subject><subject>HSP27 Heat-Shock Proteins - metabolism</subject><subject>Hsp27 protein</subject><subject>Humans</subject><subject>Immunoglobulins</subject><subject>Kinases</subject><subject>Lamin B Receptor</subject><subject>Lung cancer</subject><subject>Medical prognosis</subject><subject>Melanoma</subject><subject>Metastases</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Chaperones</subject><subject>Molecular Targeted Therapy</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - enzymology</subject><subject>Neoplasms - pathology</subject><subject>Oncogene Addiction</subject><subject>oncogenes</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - genetics</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Proto-Oncogene Proteins c-bcl-2 - genetics</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Proto-Oncogene Proteins c-met - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins c-met - genetics</subject><subject>Proto-Oncogene Proteins c-met - metabolism</subject><subject>Receptors, Cytoplasmic and Nuclear - genetics</subject><subject>Receptors, Cytoplasmic and Nuclear - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>small heat‐shock proteins</subject><subject>Stem cells</subject><subject>target therapy</subject><subject>Tumor cell lines</subject><subject>Tumors</subject><issn>1574-7891</issn><issn>1878-0261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>PIMPY</sourceid><recordid>eNqFks9uEzEQxlcIREvhzA1Z4lKkbmp71_8uSGmVNEipiko5W16vN-uyscPaaZVbH6HPyJPgbUqgCAn5MNbMb77RjL4se4vgCEGIjxFnPIeYohHCsMTPsv1d5nn6E1bmjAu0l70K4RpCQgUVL7M9zBHHRQH3szAzKv64uw-t19_AqvfRWAcwA4ezL58xOwIpnKAPwAYQNi62JloNOhNb1YHogTZdF8CtjS3wTvuFcamsdLQ3KlrvgG_A-eTqCEzOppdAuRqcXI6nr7MXjeqCefMYD7Kv08nV6SyfX5x9Oh3Pc00KgnNREIiJ4LXGDcYGaVpWuMY1rzQxUAtVIUJ10xCkDa-pFqRRBcW6qlmFK0GLg-zjVne1rpam1sbFXnVy1dul6jfSKyufVpxt5cLfSFJSVgqeBA4fBXr_fW1ClEsbhpWVM34dJOKUpotCjhL6_i_02q97l9aTGHPBCo6Y-E0tVGekdY1Pc_UgKsesQILA8oEa_YNKrzZLq70zjU35Jw3H2wbd-xB60-x2RFAOPpGDK-TgCvngk9Tx7s_T7PhfxkgA3QK3adbmf3ry_GKOt8o_AZ2KxNs</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Konda, John D.</creator><creator>Olivero, Martina</creator><creator>Musiani, Daniele</creator><creator>Lamba, Simona</creator><creator>Di Renzo, Maria F.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201706</creationdate><title>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</title><author>Konda, John D. ; Olivero, Martina ; Musiani, Daniele ; Lamba, Simona ; Di Renzo, Maria F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Addictions</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>c-Met protein</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Caspase</topic><topic>Caspase 3 - genetics</topic><topic>Caspase 3 - metabolism</topic><topic>Cell activation</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane Permeability</topic><topic>Cell Proliferation - drug effects</topic><topic>Chemotherapy</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Cytotoxicity</topic><topic>Development and progression</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>ErbB Receptors - antagonists & inhibitors</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gastric cancer</topic><topic>Gene expression</topic><topic>Gene Knockdown Techniques</topic><topic>Genetic aspects</topic><topic>Heat shock proteins</topic><topic>HEK293 Cells</topic><topic>HSP27 Heat-Shock Proteins - genetics</topic><topic>HSP27 Heat-Shock Proteins - metabolism</topic><topic>Hsp27 protein</topic><topic>Humans</topic><topic>Immunoglobulins</topic><topic>Kinases</topic><topic>Lamin B Receptor</topic><topic>Lung cancer</topic><topic>Medical prognosis</topic><topic>Melanoma</topic><topic>Metastases</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Chaperones</topic><topic>Molecular Targeted Therapy</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - enzymology</topic><topic>Neoplasms - pathology</topic><topic>Oncogene Addiction</topic><topic>oncogenes</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - genetics</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Proto-Oncogene Proteins c-bcl-2 - genetics</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Proto-Oncogene Proteins c-met - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins c-met - genetics</topic><topic>Proto-Oncogene Proteins c-met - metabolism</topic><topic>Receptors, Cytoplasmic and Nuclear - genetics</topic><topic>Receptors, Cytoplasmic and Nuclear - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>small heat‐shock proteins</topic><topic>Stem cells</topic><topic>target therapy</topic><topic>Tumor cell lines</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konda, John D.</creatorcontrib><creatorcontrib>Olivero, Martina</creatorcontrib><creatorcontrib>Musiani, Daniele</creatorcontrib><creatorcontrib>Lamba, Simona</creatorcontrib><creatorcontrib>Di Renzo, Maria F.</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konda, John D.</au><au>Olivero, Martina</au><au>Musiani, Daniele</au><au>Lamba, Simona</au><au>Di Renzo, Maria F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF</atitle><jtitle>Molecular oncology</jtitle><addtitle>Mol Oncol</addtitle><date>2017-06</date><risdate>2017</risdate><volume>11</volume><issue>6</issue><spage>599</spage><epage>611</epage><pages>599-611</pages><issn>1574-7891</issn><eissn>1878-0261</eissn><abstract>The small heat‐shock protein of 27 kDa (HSP27) is highly expressed in many cancers and is associated with aggressive tumour behaviour, metastasis, poor prognosis and resistance to chemotherapy. We aimed at assessing the role of HSP27 in modulating responses to target therapies. We selected several oncogene‐addicted cancer cell lines, which undergo either cell cycle blockade or cell death in response to agents that target the specific oncogene. Surprisingly, HSP27 suppression alone resulted in the apoptotic death of MET‐addicted EBC‐1 lung cancer cells, epidermal growth factor receptor (EGFR)‐addicted colorectal carcinoma (CRC) DiFi cells and BRAF‐addicted CRC COLO205 and OXCO‐1 and melanoma COLO741 cells, all of which also undergo death when treated with the specific targeted agent. In other cell lines, such as MET‐addicted gastric carcinoma MKN45 and EGFR‐addicted CRC SW48 lines, where oncogene inhibition only blocked proliferation, HSP27 knockdown made targeted agents switch from cytostatic to cytotoxic activity. Mechanistically, the more the cells were susceptible to HSP27 suppression, the more they were primed for death, as demonstrated by increased levels of mitochondrial outer membrane permeabilization. Priming for death was accompanied by the increase in pro‐apoptotic proteins of the BCL2 family and of active caspase‐3 and lamin B. Together, these data suggest that oncogene‐addicted cells require HSP27 for survival and that HSP27 might interfere with the effectiveness of targeted agents.
Knockdown of the small heat‐shock protein HSP27 triggers apoptosis in cancer cells with oncogene overactivation and converts cytostatic targeted agents into fully cytotoxic drugs. HSP27 suppression results in increased mitochondrial membrane permeabilization due to modulation of BCL2 proteins and primes cells for apoptosis. Thus, increased expression of HSP27 in cancer might interfere with the effectiveness of targeted therapies.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>28182330</pmid><doi>10.1002/1878-0261.12042</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-7891 |
ispartof | Molecular oncology, 2017-06, Vol.11 (6), p.599-611 |
issn | 1574-7891 1878-0261 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5467498 |
source | PubMed (Medline); Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Addictions Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Apoptosis Apoptosis - drug effects c-Met protein Cancer Cancer therapies Caspase Caspase 3 - genetics Caspase 3 - metabolism Cell activation Cell cycle Cell Cycle - drug effects Cell death Cell Line, Tumor Cell Membrane Permeability Cell Proliferation - drug effects Chemotherapy Colorectal cancer Colorectal carcinoma Cytotoxicity Development and progression Epidermal growth factor Epidermal growth factor receptors ErbB Receptors - antagonists & inhibitors ErbB Receptors - genetics ErbB Receptors - metabolism Gastric cancer Gene expression Gene Knockdown Techniques Genetic aspects Heat shock proteins HEK293 Cells HSP27 Heat-Shock Proteins - genetics HSP27 Heat-Shock Proteins - metabolism Hsp27 protein Humans Immunoglobulins Kinases Lamin B Receptor Lung cancer Medical prognosis Melanoma Metastases Mitochondria Mitochondria - metabolism Molecular Chaperones Molecular Targeted Therapy Mutation Neoplasms - drug therapy Neoplasms - enzymology Neoplasms - pathology Oncogene Addiction oncogenes Prostate Proteins Proto-Oncogene Proteins B-raf - antagonists & inhibitors Proto-Oncogene Proteins B-raf - genetics Proto-Oncogene Proteins B-raf - metabolism Proto-Oncogene Proteins c-bcl-2 - genetics Proto-Oncogene Proteins c-bcl-2 - metabolism Proto-Oncogene Proteins c-met - antagonists & inhibitors Proto-Oncogene Proteins c-met - genetics Proto-Oncogene Proteins c-met - metabolism Receptors, Cytoplasmic and Nuclear - genetics Receptors, Cytoplasmic and Nuclear - metabolism RNA Interference RNA, Small Interfering - genetics small heat‐shock proteins Stem cells target therapy Tumor cell lines Tumors |
title | Heat‐shock protein 27 (HSP27, HSPB1) is synthetic lethal to cells with oncogenic activation of MET, EGFR and BRAF |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heat%E2%80%90shock%20protein%2027%20(HSP27,%20HSPB1)%20is%20synthetic%20lethal%20to%20cells%20with%20oncogenic%20activation%20of%20MET,%20EGFR%20and%20BRAF&rft.jtitle=Molecular%20oncology&rft.au=Konda,%20John%20D.&rft.date=2017-06&rft.volume=11&rft.issue=6&rft.spage=599&rft.epage=611&rft.pages=599-611&rft.issn=1574-7891&rft.eissn=1878-0261&rft_id=info:doi/10.1002/1878-0261.12042&rft_dat=%3Cgale_pubme%3EA731950479%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5352-93502598dc2f22e1c64b2d2d8bc5e0c9ab156cff51ce8d6c95fa362cbd7b2b963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2289738179&rft_id=info:pmid/28182330&rft_galeid=A731950479&rfr_iscdi=true |