Loading…

Is magnetogenetics the new optogenetics?

Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which of...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2017-06, Vol.36 (12), p.1643-1646
Main Authors: Nimpf, Simon, Keays, David A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3
cites cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3
container_end_page 1646
container_issue 12
container_start_page 1643
container_title The EMBO journal
container_volume 36
creator Nimpf, Simon
Keays, David A
description Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics. Graphical Abstract The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.
doi_str_mv 10.15252/embj.201797177
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5470037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902106548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWh9rd1Jw083ovZk8Ji4UFZ8obnQdMultnTKPOmkV_73Raq2CuEkg9zuHc3IZ20bYQ8kl36cqH-1xQG00ar3EOigUJBy0XGYd4AoTgZlZY-shjABAZhpX2RrPZKpQYof1rkK3csOaJs2Q4ln40J08Ureml24z_n482mQrA1cG2vq8N9jD-dn96WVyc3dxdXp8k3iJqU5kprTIB0Q5ogAnfJqLvkGQnowxTuV9p_qZ18q7geAm4wZSLrzhxqVcGUo32OHMdzzNK-p7qietK-24LSrXvtrGFfbnpC4e7bB5tlJogFRHg96nQds8TSlMbFUET2XpamqmwaIBjqCkyCK6-wsdNdO2jvXeqZhaxQ6R2p9Rvm1CaGkwD4NgP7Zg37dg51uIip3FDnP-69sjcDADXoqSXv_zs2e3J9eL7jATh6irh9QupP4j0BsG5aLe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909106140</pqid></control><display><type>article</type><title>Is magnetogenetics the new optogenetics?</title><source>Open Access: PubMed Central</source><creator>Nimpf, Simon ; Keays, David A</creator><creatorcontrib>Nimpf, Simon ; Keays, David A</creatorcontrib><description>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics. Graphical Abstract The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201797177</identifier><identifier>PMID: 28536151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Commentary ; EMBO27 ; Energy ; Energy sources ; Genetics ; Humans ; Information processing ; Iron ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - genetics ; Light sources ; Magnetic fields ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Nervous system ; Neurons ; Optics ; Optogenetics - methods ; Optogenetics - trends ; Stimuli ; Surgery ; Tethering ; Torque</subject><ispartof>The EMBO journal, 2017-06, Vol.36 (12), p.1643-1646</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2017</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2017 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</citedby><cites>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</cites><orcidid>0000-0002-8343-8002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28536151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nimpf, Simon</creatorcontrib><creatorcontrib>Keays, David A</creatorcontrib><title>Is magnetogenetics the new optogenetics?</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics. Graphical Abstract The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</description><subject>Animals</subject><subject>Commentary</subject><subject>EMBO27</subject><subject>Energy</subject><subject>Energy sources</subject><subject>Genetics</subject><subject>Humans</subject><subject>Information processing</subject><subject>Iron</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - genetics</subject><subject>Light sources</subject><subject>Magnetic fields</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Optics</subject><subject>Optogenetics - methods</subject><subject>Optogenetics - trends</subject><subject>Stimuli</subject><subject>Surgery</subject><subject>Tethering</subject><subject>Torque</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtLAzEUhYMoWh9rd1Jw083ovZk8Ji4UFZ8obnQdMultnTKPOmkV_73Raq2CuEkg9zuHc3IZ20bYQ8kl36cqH-1xQG00ar3EOigUJBy0XGYd4AoTgZlZY-shjABAZhpX2RrPZKpQYof1rkK3csOaJs2Q4ln40J08Ureml24z_n482mQrA1cG2vq8N9jD-dn96WVyc3dxdXp8k3iJqU5kprTIB0Q5ogAnfJqLvkGQnowxTuV9p_qZ18q7geAm4wZSLrzhxqVcGUo32OHMdzzNK-p7qietK-24LSrXvtrGFfbnpC4e7bB5tlJogFRHg96nQds8TSlMbFUET2XpamqmwaIBjqCkyCK6-wsdNdO2jvXeqZhaxQ6R2p9Rvm1CaGkwD4NgP7Zg37dg51uIip3FDnP-69sjcDADXoqSXv_zs2e3J9eL7jATh6irh9QupP4j0BsG5aLe</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Nimpf, Simon</creator><creator>Keays, David A</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8343-8002</orcidid></search><sort><creationdate>20170614</creationdate><title>Is magnetogenetics the new optogenetics?</title><author>Nimpf, Simon ; Keays, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Commentary</topic><topic>EMBO27</topic><topic>Energy</topic><topic>Energy sources</topic><topic>Genetics</topic><topic>Humans</topic><topic>Information processing</topic><topic>Iron</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - genetics</topic><topic>Light sources</topic><topic>Magnetic fields</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Optics</topic><topic>Optogenetics - methods</topic><topic>Optogenetics - trends</topic><topic>Stimuli</topic><topic>Surgery</topic><topic>Tethering</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimpf, Simon</creatorcontrib><creatorcontrib>Keays, David A</creatorcontrib><collection>SpringerOpen</collection><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimpf, Simon</au><au>Keays, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is magnetogenetics the new optogenetics?</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><spage>1643</spage><epage>1646</epage><pages>1643-1646</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics. Graphical Abstract The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28536151</pmid><doi>10.15252/embj.201797177</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8343-8002</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2017-06, Vol.36 (12), p.1643-1646
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5470037
source Open Access: PubMed Central
subjects Animals
Commentary
EMBO27
Energy
Energy sources
Genetics
Humans
Information processing
Iron
Iron-Sulfur Proteins - chemistry
Iron-Sulfur Proteins - genetics
Light sources
Magnetic fields
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - genetics
Nervous system
Neurons
Optics
Optogenetics - methods
Optogenetics - trends
Stimuli
Surgery
Tethering
Torque
title Is magnetogenetics the new optogenetics?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20magnetogenetics%20the%20new%20optogenetics?&rft.jtitle=The%20EMBO%20journal&rft.au=Nimpf,%20Simon&rft.date=2017-06-14&rft.volume=36&rft.issue=12&rft.spage=1643&rft.epage=1646&rft.pages=1643-1646&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201797177&rft_dat=%3Cproquest_pubme%3E1902106548%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909106140&rft_id=info:pmid/28536151&rfr_iscdi=true