Loading…
Is magnetogenetics the new optogenetics?
Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which of...
Saved in:
Published in: | The EMBO journal 2017-06, Vol.36 (12), p.1643-1646 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3 |
container_end_page | 1646 |
container_issue | 12 |
container_start_page | 1643 |
container_title | The EMBO journal |
container_volume | 36 |
creator | Nimpf, Simon Keays, David A |
description | Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics.
Graphical Abstract
The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application. |
doi_str_mv | 10.15252/embj.201797177 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5470037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1902106548</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMoWh9rd1Jw083ovZk8Ji4UFZ8obnQdMultnTKPOmkV_73Raq2CuEkg9zuHc3IZ20bYQ8kl36cqH-1xQG00ar3EOigUJBy0XGYd4AoTgZlZY-shjABAZhpX2RrPZKpQYof1rkK3csOaJs2Q4ln40J08Ureml24z_n482mQrA1cG2vq8N9jD-dn96WVyc3dxdXp8k3iJqU5kprTIB0Q5ogAnfJqLvkGQnowxTuV9p_qZ18q7geAm4wZSLrzhxqVcGUo32OHMdzzNK-p7qietK-24LSrXvtrGFfbnpC4e7bB5tlJogFRHg96nQds8TSlMbFUET2XpamqmwaIBjqCkyCK6-wsdNdO2jvXeqZhaxQ6R2p9Rvm1CaGkwD4NgP7Zg37dg51uIip3FDnP-69sjcDADXoqSXv_zs2e3J9eL7jATh6irh9QupP4j0BsG5aLe</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909106140</pqid></control><display><type>article</type><title>Is magnetogenetics the new optogenetics?</title><source>Open Access: PubMed Central</source><creator>Nimpf, Simon ; Keays, David A</creator><creatorcontrib>Nimpf, Simon ; Keays, David A</creatorcontrib><description>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics.
Graphical Abstract
The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.201797177</identifier><identifier>PMID: 28536151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Commentary ; EMBO27 ; Energy ; Energy sources ; Genetics ; Humans ; Information processing ; Iron ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - genetics ; Light sources ; Magnetic fields ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Nervous system ; Neurons ; Optics ; Optogenetics - methods ; Optogenetics - trends ; Stimuli ; Surgery ; Tethering ; Torque</subject><ispartof>The EMBO journal, 2017-06, Vol.36 (12), p.1643-1646</ispartof><rights>The Authors. Published under the terms of the CC BY 4.0 license 2017</rights><rights>2017 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2017 EMBO</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</citedby><cites>FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</cites><orcidid>0000-0002-8343-8002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470037/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5470037/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28536151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nimpf, Simon</creatorcontrib><creatorcontrib>Keays, David A</creatorcontrib><title>Is magnetogenetics the new optogenetics?</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics.
Graphical Abstract
The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</description><subject>Animals</subject><subject>Commentary</subject><subject>EMBO27</subject><subject>Energy</subject><subject>Energy sources</subject><subject>Genetics</subject><subject>Humans</subject><subject>Information processing</subject><subject>Iron</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - genetics</subject><subject>Light sources</subject><subject>Magnetic fields</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Optics</subject><subject>Optogenetics - methods</subject><subject>Optogenetics - trends</subject><subject>Stimuli</subject><subject>Surgery</subject><subject>Tethering</subject><subject>Torque</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtLAzEUhYMoWh9rd1Jw083ovZk8Ji4UFZ8obnQdMultnTKPOmkV_73Raq2CuEkg9zuHc3IZ20bYQ8kl36cqH-1xQG00ar3EOigUJBy0XGYd4AoTgZlZY-shjABAZhpX2RrPZKpQYof1rkK3csOaJs2Q4ln40J08Ureml24z_n482mQrA1cG2vq8N9jD-dn96WVyc3dxdXp8k3iJqU5kprTIB0Q5ogAnfJqLvkGQnowxTuV9p_qZ18q7geAm4wZSLrzhxqVcGUo32OHMdzzNK-p7qietK-24LSrXvtrGFfbnpC4e7bB5tlJogFRHg96nQds8TSlMbFUET2XpamqmwaIBjqCkyCK6-wsdNdO2jvXeqZhaxQ6R2p9Rvm1CaGkwD4NgP7Zg37dg51uIip3FDnP-69sjcDADXoqSXv_zs2e3J9eL7jATh6irh9QupP4j0BsG5aLe</recordid><startdate>20170614</startdate><enddate>20170614</enddate><creator>Nimpf, Simon</creator><creator>Keays, David A</creator><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8343-8002</orcidid></search><sort><creationdate>20170614</creationdate><title>Is magnetogenetics the new optogenetics?</title><author>Nimpf, Simon ; Keays, David A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Commentary</topic><topic>EMBO27</topic><topic>Energy</topic><topic>Energy sources</topic><topic>Genetics</topic><topic>Humans</topic><topic>Information processing</topic><topic>Iron</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - genetics</topic><topic>Light sources</topic><topic>Magnetic fields</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Optics</topic><topic>Optogenetics - methods</topic><topic>Optogenetics - trends</topic><topic>Stimuli</topic><topic>Surgery</topic><topic>Tethering</topic><topic>Torque</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nimpf, Simon</creatorcontrib><creatorcontrib>Keays, David A</creatorcontrib><collection>SpringerOpen</collection><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nimpf, Simon</au><au>Keays, David A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is magnetogenetics the new optogenetics?</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2017-06-14</date><risdate>2017</risdate><volume>36</volume><issue>12</issue><spage>1643</spage><epage>1646</epage><pages>1643-1646</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>Optogenetics has revolutionised neuroscience as it enables investigators to establish causal relationships between neuronal activity and a behavioural outcome in a temporally precise manner. It is a powerful technology, but limited by the necessity to deliver light to the cells of interest, which often requires invasive surgery and a tethered light source. Magnetogenetics aims to overcome these issues by manipulating neurons with magnetic stimuli. As magnetic fields can pass freely through organic tissue, it requires no surgery or tethering the animals to an energy source. In this commentary, we assess the utility of magnetogenetics based on three different approaches: magneto‐thermo‐genetics; force/torque‐based methods; and expression of the iron chaperone ISCA1. Despite some progress, many hurdles need to be overcome if magnetogenetics is to take the helm from optogenetics.
Graphical Abstract
The technology has great potential as a tool for precise and efficient activation of neurons in any species without the need for invasive surgery but many technical and biological hurdles still stand in the way of application.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28536151</pmid><doi>10.15252/embj.201797177</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-8343-8002</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2017-06, Vol.36 (12), p.1643-1646 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5470037 |
source | Open Access: PubMed Central |
subjects | Animals Commentary EMBO27 Energy Energy sources Genetics Humans Information processing Iron Iron-Sulfur Proteins - chemistry Iron-Sulfur Proteins - genetics Light sources Magnetic fields Mitochondrial Proteins - chemistry Mitochondrial Proteins - genetics Nervous system Neurons Optics Optogenetics - methods Optogenetics - trends Stimuli Surgery Tethering Torque |
title | Is magnetogenetics the new optogenetics? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A55%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20magnetogenetics%20the%20new%20optogenetics?&rft.jtitle=The%20EMBO%20journal&rft.au=Nimpf,%20Simon&rft.date=2017-06-14&rft.volume=36&rft.issue=12&rft.spage=1643&rft.epage=1646&rft.pages=1643-1646&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.201797177&rft_dat=%3Cproquest_pubme%3E1902106548%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5137-58674bfeeb1140a4c3b4d9105ce999a6bda6d8c76caf4298290324c929a3269e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1909106140&rft_id=info:pmid/28536151&rfr_iscdi=true |