Loading…

Faecal-wood biomass co-combustion and ash composition analysis

•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:7...

Full description

Saved in:
Bibliographic Details
Published in:Fuel (Guildford) 2017-09, Vol.203, p.781-791
Main Authors: Somorin, Tosin Onabanjo, Kolios, Athanasios J., Parker, Alison, McAdam, Ewan, Williams, Leon, Tyrrel, Sean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3
cites cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3
container_end_page 791
container_issue
container_start_page 781
container_title Fuel (Guildford)
container_volume 203
creator Somorin, Tosin Onabanjo
Kolios, Athanasios J.
Parker, Alison
McAdam, Ewan
Williams, Leon
Tyrrel, Sean
description •Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash. Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.
doi_str_mv 10.1016/j.fuel.2017.05.038
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5473169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117306063</els_id><sourcerecordid>1935390441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</originalsourceid><addsrcrecordid>eNp9kU9rFEEQxRtRzBr9Ah5kwYuXGav_zXSDCBKMBgK5xHPT01NjepmZXrtmIvn29po1qIecCqp-9XhVj7HXHGoOvHm_q4cVx1oAb2vQNUjzhG24aWXVci2fsg0UqhKy4SfsBdEOAFqj1XN2IoxpWiPUhn089xj8WP1Mqd92MU2eaBtSFdLUrbTENG_93G893ZTutE8Ujz0_3lGkl-zZ4EfCV8d6yr6df74--1pdXn25OPt0WQUtYKlUM4hgbdd7o3WPZggazCBwaAAarm2PATvOPehOGNVZ2ZSplkEKsJobL0-L0d-6-7WbsA84L9mPbp_j5POdSz66fydzvHHf063TqpW8sUXg3VEgpx8r0uKmSAHH0c-YVnLcSi0tKMUL-vY_dJfWXA4mJ4rd1mqjVKHEPRVyIso4PJjh4A7xuJ07xOMO8TjQrsRTlt78fcbDyp88CvDhHsDyzNuI2VGIOAfsY8awuD7Fx_R_AVXnoT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006795844</pqid></control><display><type>article</type><title>Faecal-wood biomass co-combustion and ash composition analysis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</creator><creatorcontrib>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</creatorcontrib><description>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash. Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.05.038</identifier><identifier>PMID: 28867824</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Air flow ; Aluminum ; Biomass ; Biomass burning ; Blending ; Calcium ; Calorific value ; Combustion ; Combustion chambers ; Combustion temperature ; Conversion ; Drying ; Dust ; Faecal ash ; Feces ; Flame propagation ; Flow rates ; Flow velocity ; Fly ash ; Fuel blending ; Fuels ; Full Length ; Iron ; Mixtures ; Moisture ; Moisture content ; Nano-membrane toilet ; Nickel ; Non-sewered sanitary systems ; Physiochemistry ; Potassium ; Pretreatment ; Sanitation ; Soil conditioner ; Soil conditioners ; Soil conditions ; Soil moisture ; Spontaneous combustion ; Studies ; Temperature requirements ; Water content ; Wood</subject><ispartof>Fuel (Guildford), 2017-09, Vol.203, p.781-791</ispartof><rights>2017 The Author(s)</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</citedby><cites>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28867824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somorin, Tosin Onabanjo</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><title>Faecal-wood biomass co-combustion and ash composition analysis</title><title>Fuel (Guildford)</title><addtitle>Fuel (Lond)</addtitle><description>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash. Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</description><subject>Air flow</subject><subject>Aluminum</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Blending</subject><subject>Calcium</subject><subject>Calorific value</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Combustion temperature</subject><subject>Conversion</subject><subject>Drying</subject><subject>Dust</subject><subject>Faecal ash</subject><subject>Feces</subject><subject>Flame propagation</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fly ash</subject><subject>Fuel blending</subject><subject>Fuels</subject><subject>Full Length</subject><subject>Iron</subject><subject>Mixtures</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>Nano-membrane toilet</subject><subject>Nickel</subject><subject>Non-sewered sanitary systems</subject><subject>Physiochemistry</subject><subject>Potassium</subject><subject>Pretreatment</subject><subject>Sanitation</subject><subject>Soil conditioner</subject><subject>Soil conditioners</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Spontaneous combustion</subject><subject>Studies</subject><subject>Temperature requirements</subject><subject>Water content</subject><subject>Wood</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFEEQxRtRzBr9Ah5kwYuXGav_zXSDCBKMBgK5xHPT01NjepmZXrtmIvn29po1qIecCqp-9XhVj7HXHGoOvHm_q4cVx1oAb2vQNUjzhG24aWXVci2fsg0UqhKy4SfsBdEOAFqj1XN2IoxpWiPUhn089xj8WP1Mqd92MU2eaBtSFdLUrbTENG_93G893ZTutE8Ujz0_3lGkl-zZ4EfCV8d6yr6df74--1pdXn25OPt0WQUtYKlUM4hgbdd7o3WPZggazCBwaAAarm2PATvOPehOGNVZ2ZSplkEKsJobL0-L0d-6-7WbsA84L9mPbp_j5POdSz66fydzvHHf063TqpW8sUXg3VEgpx8r0uKmSAHH0c-YVnLcSi0tKMUL-vY_dJfWXA4mJ4rd1mqjVKHEPRVyIso4PJjh4A7xuJ07xOMO8TjQrsRTlt78fcbDyp88CvDhHsDyzNuI2VGIOAfsY8awuD7Fx_R_AVXnoT0</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Somorin, Tosin Onabanjo</creator><creator>Kolios, Athanasios J.</creator><creator>Parker, Alison</creator><creator>McAdam, Ewan</creator><creator>Williams, Leon</creator><creator>Tyrrel, Sean</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Butterworths Scientific Publications</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>Faecal-wood biomass co-combustion and ash composition analysis</title><author>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>Aluminum</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Blending</topic><topic>Calcium</topic><topic>Calorific value</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Combustion temperature</topic><topic>Conversion</topic><topic>Drying</topic><topic>Dust</topic><topic>Faecal ash</topic><topic>Feces</topic><topic>Flame propagation</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fly ash</topic><topic>Fuel blending</topic><topic>Fuels</topic><topic>Full Length</topic><topic>Iron</topic><topic>Mixtures</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>Nano-membrane toilet</topic><topic>Nickel</topic><topic>Non-sewered sanitary systems</topic><topic>Physiochemistry</topic><topic>Potassium</topic><topic>Pretreatment</topic><topic>Sanitation</topic><topic>Soil conditioner</topic><topic>Soil conditioners</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Spontaneous combustion</topic><topic>Studies</topic><topic>Temperature requirements</topic><topic>Water content</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somorin, Tosin Onabanjo</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somorin, Tosin Onabanjo</au><au>Kolios, Athanasios J.</au><au>Parker, Alison</au><au>McAdam, Ewan</au><au>Williams, Leon</au><au>Tyrrel, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faecal-wood biomass co-combustion and ash composition analysis</atitle><jtitle>Fuel (Guildford)</jtitle><addtitle>Fuel (Lond)</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>203</volume><spage>781</spage><epage>791</epage><pages>781-791</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash. Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28867824</pmid><doi>10.1016/j.fuel.2017.05.038</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2017-09, Vol.203, p.781-791
issn 0016-2361
1873-7153
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5473169
source ScienceDirect Freedom Collection 2022-2024
subjects Air flow
Aluminum
Biomass
Biomass burning
Blending
Calcium
Calorific value
Combustion
Combustion chambers
Combustion temperature
Conversion
Drying
Dust
Faecal ash
Feces
Flame propagation
Flow rates
Flow velocity
Fly ash
Fuel blending
Fuels
Full Length
Iron
Mixtures
Moisture
Moisture content
Nano-membrane toilet
Nickel
Non-sewered sanitary systems
Physiochemistry
Potassium
Pretreatment
Sanitation
Soil conditioner
Soil conditioners
Soil conditions
Soil moisture
Spontaneous combustion
Studies
Temperature requirements
Water content
Wood
title Faecal-wood biomass co-combustion and ash composition analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faecal-wood%20biomass%20co-combustion%20and%20ash%20composition%20analysis&rft.jtitle=Fuel%20(Guildford)&rft.au=Somorin,%20Tosin%20Onabanjo&rft.date=2017-09-01&rft.volume=203&rft.spage=781&rft.epage=791&rft.pages=781-791&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.05.038&rft_dat=%3Cproquest_pubme%3E1935390441%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006795844&rft_id=info:pmid/28867824&rfr_iscdi=true