Loading…
Faecal-wood biomass co-combustion and ash composition analysis
•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:7...
Saved in:
Published in: | Fuel (Guildford) 2017-09, Vol.203, p.781-791 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3 |
container_end_page | 791 |
container_issue | |
container_start_page | 781 |
container_title | Fuel (Guildford) |
container_volume | 203 |
creator | Somorin, Tosin Onabanjo Kolios, Athanasios J. Parker, Alison McAdam, Ewan Williams, Leon Tyrrel, Sean |
description | •Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash.
Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems. |
doi_str_mv | 10.1016/j.fuel.2017.05.038 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5473169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236117306063</els_id><sourcerecordid>1935390441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</originalsourceid><addsrcrecordid>eNp9kU9rFEEQxRtRzBr9Ah5kwYuXGav_zXSDCBKMBgK5xHPT01NjepmZXrtmIvn29po1qIecCqp-9XhVj7HXHGoOvHm_q4cVx1oAb2vQNUjzhG24aWXVci2fsg0UqhKy4SfsBdEOAFqj1XN2IoxpWiPUhn089xj8WP1Mqd92MU2eaBtSFdLUrbTENG_93G893ZTutE8Ujz0_3lGkl-zZ4EfCV8d6yr6df74--1pdXn25OPt0WQUtYKlUM4hgbdd7o3WPZggazCBwaAAarm2PATvOPehOGNVZ2ZSplkEKsJobL0-L0d-6-7WbsA84L9mPbp_j5POdSz66fydzvHHf063TqpW8sUXg3VEgpx8r0uKmSAHH0c-YVnLcSi0tKMUL-vY_dJfWXA4mJ4rd1mqjVKHEPRVyIso4PJjh4A7xuJ07xOMO8TjQrsRTlt78fcbDyp88CvDhHsDyzNuI2VGIOAfsY8awuD7Fx_R_AVXnoT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006795844</pqid></control><display><type>article</type><title>Faecal-wood biomass co-combustion and ash composition analysis</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</creator><creatorcontrib>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</creatorcontrib><description>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash.
Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2017.05.038</identifier><identifier>PMID: 28867824</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Air flow ; Aluminum ; Biomass ; Biomass burning ; Blending ; Calcium ; Calorific value ; Combustion ; Combustion chambers ; Combustion temperature ; Conversion ; Drying ; Dust ; Faecal ash ; Feces ; Flame propagation ; Flow rates ; Flow velocity ; Fly ash ; Fuel blending ; Fuels ; Full Length ; Iron ; Mixtures ; Moisture ; Moisture content ; Nano-membrane toilet ; Nickel ; Non-sewered sanitary systems ; Physiochemistry ; Potassium ; Pretreatment ; Sanitation ; Soil conditioner ; Soil conditioners ; Soil conditions ; Soil moisture ; Spontaneous combustion ; Studies ; Temperature requirements ; Water content ; Wood</subject><ispartof>Fuel (Guildford), 2017-09, Vol.203, p.781-791</ispartof><rights>2017 The Author(s)</rights><rights>Copyright Elsevier BV Sep 1, 2017</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</citedby><cites>FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28867824$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Somorin, Tosin Onabanjo</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><title>Faecal-wood biomass co-combustion and ash composition analysis</title><title>Fuel (Guildford)</title><addtitle>Fuel (Lond)</addtitle><description>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash.
Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</description><subject>Air flow</subject><subject>Aluminum</subject><subject>Biomass</subject><subject>Biomass burning</subject><subject>Blending</subject><subject>Calcium</subject><subject>Calorific value</subject><subject>Combustion</subject><subject>Combustion chambers</subject><subject>Combustion temperature</subject><subject>Conversion</subject><subject>Drying</subject><subject>Dust</subject><subject>Faecal ash</subject><subject>Feces</subject><subject>Flame propagation</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fly ash</subject><subject>Fuel blending</subject><subject>Fuels</subject><subject>Full Length</subject><subject>Iron</subject><subject>Mixtures</subject><subject>Moisture</subject><subject>Moisture content</subject><subject>Nano-membrane toilet</subject><subject>Nickel</subject><subject>Non-sewered sanitary systems</subject><subject>Physiochemistry</subject><subject>Potassium</subject><subject>Pretreatment</subject><subject>Sanitation</subject><subject>Soil conditioner</subject><subject>Soil conditioners</subject><subject>Soil conditions</subject><subject>Soil moisture</subject><subject>Spontaneous combustion</subject><subject>Studies</subject><subject>Temperature requirements</subject><subject>Water content</subject><subject>Wood</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFEEQxRtRzBr9Ah5kwYuXGav_zXSDCBKMBgK5xHPT01NjepmZXrtmIvn29po1qIecCqp-9XhVj7HXHGoOvHm_q4cVx1oAb2vQNUjzhG24aWXVci2fsg0UqhKy4SfsBdEOAFqj1XN2IoxpWiPUhn089xj8WP1Mqd92MU2eaBtSFdLUrbTENG_93G893ZTutE8Ujz0_3lGkl-zZ4EfCV8d6yr6df74--1pdXn25OPt0WQUtYKlUM4hgbdd7o3WPZggazCBwaAAarm2PATvOPehOGNVZ2ZSplkEKsJobL0-L0d-6-7WbsA84L9mPbp_j5POdSz66fydzvHHf063TqpW8sUXg3VEgpx8r0uKmSAHH0c-YVnLcSi0tKMUL-vY_dJfWXA4mJ4rd1mqjVKHEPRVyIso4PJjh4A7xuJ07xOMO8TjQrsRTlt78fcbDyp88CvDhHsDyzNuI2VGIOAfsY8awuD7Fx_R_AVXnoT0</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Somorin, Tosin Onabanjo</creator><creator>Kolios, Athanasios J.</creator><creator>Parker, Alison</creator><creator>McAdam, Ewan</creator><creator>Williams, Leon</creator><creator>Tyrrel, Sean</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Butterworths Scientific Publications</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>Faecal-wood biomass co-combustion and ash composition analysis</title><author>Somorin, Tosin Onabanjo ; Kolios, Athanasios J. ; Parker, Alison ; McAdam, Ewan ; Williams, Leon ; Tyrrel, Sean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>Aluminum</topic><topic>Biomass</topic><topic>Biomass burning</topic><topic>Blending</topic><topic>Calcium</topic><topic>Calorific value</topic><topic>Combustion</topic><topic>Combustion chambers</topic><topic>Combustion temperature</topic><topic>Conversion</topic><topic>Drying</topic><topic>Dust</topic><topic>Faecal ash</topic><topic>Feces</topic><topic>Flame propagation</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fly ash</topic><topic>Fuel blending</topic><topic>Fuels</topic><topic>Full Length</topic><topic>Iron</topic><topic>Mixtures</topic><topic>Moisture</topic><topic>Moisture content</topic><topic>Nano-membrane toilet</topic><topic>Nickel</topic><topic>Non-sewered sanitary systems</topic><topic>Physiochemistry</topic><topic>Potassium</topic><topic>Pretreatment</topic><topic>Sanitation</topic><topic>Soil conditioner</topic><topic>Soil conditioners</topic><topic>Soil conditions</topic><topic>Soil moisture</topic><topic>Spontaneous combustion</topic><topic>Studies</topic><topic>Temperature requirements</topic><topic>Water content</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Somorin, Tosin Onabanjo</creatorcontrib><creatorcontrib>Kolios, Athanasios J.</creatorcontrib><creatorcontrib>Parker, Alison</creatorcontrib><creatorcontrib>McAdam, Ewan</creatorcontrib><creatorcontrib>Williams, Leon</creatorcontrib><creatorcontrib>Tyrrel, Sean</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Somorin, Tosin Onabanjo</au><au>Kolios, Athanasios J.</au><au>Parker, Alison</au><au>McAdam, Ewan</au><au>Williams, Leon</au><au>Tyrrel, Sean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Faecal-wood biomass co-combustion and ash composition analysis</atitle><jtitle>Fuel (Guildford)</jtitle><addtitle>Fuel (Lond)</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>203</volume><spage>781</spage><epage>791</epage><pages>781-791</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>•Co-combustion analysis was investigated using a bench-scale combustor test rig.•Raw human faeces (FC) contained 73.9±4.4wt% moisture as received basis.•Blending with wood dust (WD) in a 50:50 ratio reduced moisture levels by ∼40%.•Minimum acceptable blend for combustion without prior drying is 30:70 WD:FC.•Fuel burn rates are 3.18–4.49g/min for all the blends at air flow of 12–18L/min.•Oxygen, potassium and calcium are the most abundant elements in faecal ash.
Fuel blending is a widely used approach in biomass combustion, particularly for feedstocks with low calorific value and high moisture content. In on-site sanitation technologies, fuel blending is proposed as a pre-treatment requirement to reduce moisture levels and improve the physiochemical properties of raw faeces prior to drying. This study investigates the co-combustion performance of wood dust: raw human faeces blends at varying air-to-fuel ratios in a bench-scale combustor test rig. It concludes with ash composition analyses and discusses their potential application and related problems. The study shows that a 50:50 wood dust (WD): raw human faeces (FC) can reduce moisture levels in raw human faeces by ∼40% prior to drying. The minimum acceptable blend for treating moist faeces without prior drying at a combustion air flow rate of 14–18L/min is 30:70 WD: FC. For self-sustained ignition and flame propagation, the minimum combustion temperature required for conversion of the fuel to ash is ∼400°C. The most abundant elements in faecal ash are potassium and calcium, while elements such as nickel, aluminium and iron are in trace quantities. This suggests the potential use of faecal ash as a soil conditioner, but increases the tendency for fly ash formation and sintering problems.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>28867824</pmid><doi>10.1016/j.fuel.2017.05.038</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2017-09, Vol.203, p.781-791 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5473169 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Air flow Aluminum Biomass Biomass burning Blending Calcium Calorific value Combustion Combustion chambers Combustion temperature Conversion Drying Dust Faecal ash Feces Flame propagation Flow rates Flow velocity Fly ash Fuel blending Fuels Full Length Iron Mixtures Moisture Moisture content Nano-membrane toilet Nickel Non-sewered sanitary systems Physiochemistry Potassium Pretreatment Sanitation Soil conditioner Soil conditioners Soil conditions Soil moisture Spontaneous combustion Studies Temperature requirements Water content Wood |
title | Faecal-wood biomass co-combustion and ash composition analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Faecal-wood%20biomass%20co-combustion%20and%20ash%20composition%20analysis&rft.jtitle=Fuel%20(Guildford)&rft.au=Somorin,%20Tosin%20Onabanjo&rft.date=2017-09-01&rft.volume=203&rft.spage=781&rft.epage=791&rft.pages=781-791&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2017.05.038&rft_dat=%3Cproquest_pubme%3E1935390441%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c520t-46f2c99bda855de8fc508f2ef6006159deceb11a05b284b9368f253c3209518a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006795844&rft_id=info:pmid/28867824&rfr_iscdi=true |