Loading…

MST1/MST2 Protein Kinases: Regulation and Physiologic Roles

The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a uniq...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2016-10, Vol.55 (39), p.5507-5519
Main Authors: Galan, Jacob A, Avruch, Joseph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1–6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1’s control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2’s physiologic programs and contributions to pathophysiology remains to be elucidated.
ISSN:0006-2960
1520-4995
1520-4995
DOI:10.1021/acs.biochem.6b00763