Loading…
Chemical and Lattice Stability of the Tin Sulfides
The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-depen...
Saved in:
Published in: | Journal of physical chemistry. C 2017-03, Vol.121 (12), p.6446-6454 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33 |
---|---|
cites | cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33 |
container_end_page | 6454 |
container_issue | 12 |
container_start_page | 6446 |
container_title | Journal of physical chemistry. C |
container_volume | 121 |
creator | Skelton, Jonathan M Burton, Lee A Oba, Fumiyasu Walsh, Aron |
description | The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition. |
doi_str_mv | 10.1021/acs.jpcc.6b12581 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914289808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwM6GMDKT4ETv2goQiXlIlhpbZunEc6iqPEjtI_fektFQwMPlKPt93rw5ClwRPCabkFoyfrtbGTEVOKJfkCI2JYjROE86PD3OSjtCZ9yuMOcOEnaIRlYJTKdUY0Wxpa2egiqApohmE4IyN5gFyV7mwidoyCksbLVwTzfuqdIX15-ikhMrbi_07QW-PD4vsOZ69Pr1k97MYuMQhNoIrCcBKlgtpUlXkIEvJEyJYSTgUKWaJsAZykUpuChBkgPGAJIykyjI2QXe73nWf17YwtgkdVHrduRq6jW7B6b8_jVvq9_ZT8yRVgsqh4Hpf0LUfvfVB184bW1XQ2Lb3miiSUKkk3qJ4h5qu9b6z5WENwXqrWg-q9Va13qseIle_zzsEftwOwM0O-I62fdcMtv7v-wJ9_Ipw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914289808</pqid></control><display><type>article</type><title>Chemical and Lattice Stability of the Tin Sulfides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</creator><creatorcontrib>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</creatorcontrib><description>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b12581</identifier><identifier>PMID: 28652889</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6446-6454</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</citedby><cites>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</cites><orcidid>0000-0002-0395-1202 ; 0000-0001-5460-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28652889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skelton, Jonathan M</creatorcontrib><creatorcontrib>Burton, Lee A</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><title>Chemical and Lattice Stability of the Tin Sulfides</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwM6GMDKT4ETv2goQiXlIlhpbZunEc6iqPEjtI_fektFQwMPlKPt93rw5ClwRPCabkFoyfrtbGTEVOKJfkCI2JYjROE86PD3OSjtCZ9yuMOcOEnaIRlYJTKdUY0Wxpa2egiqApohmE4IyN5gFyV7mwidoyCksbLVwTzfuqdIX15-ikhMrbi_07QW-PD4vsOZ69Pr1k97MYuMQhNoIrCcBKlgtpUlXkIEvJEyJYSTgUKWaJsAZykUpuChBkgPGAJIykyjI2QXe73nWf17YwtgkdVHrduRq6jW7B6b8_jVvq9_ZT8yRVgsqh4Hpf0LUfvfVB184bW1XQ2Lb3miiSUKkk3qJ4h5qu9b6z5WENwXqrWg-q9Va13qseIle_zzsEftwOwM0O-I62fdcMtv7v-wJ9_Ipw</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Skelton, Jonathan M</creator><creator>Burton, Lee A</creator><creator>Oba, Fumiyasu</creator><creator>Walsh, Aron</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0395-1202</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid></search><sort><creationdate>20170330</creationdate><title>Chemical and Lattice Stability of the Tin Sulfides</title><author>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skelton, Jonathan M</creatorcontrib><creatorcontrib>Burton, Lee A</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skelton, Jonathan M</au><au>Burton, Lee A</au><au>Oba, Fumiyasu</au><au>Walsh, Aron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical and Lattice Stability of the Tin Sulfides</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>121</volume><issue>12</issue><spage>6446</spage><epage>6454</epage><pages>6446-6454</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28652889</pmid><doi>10.1021/acs.jpcc.6b12581</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0395-1202</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-7447 |
ispartof | Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6446-6454 |
issn | 1932-7447 1932-7455 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479628 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Chemical and Lattice Stability of the Tin Sulfides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20and%20Lattice%20Stability%20of%20the%20Tin%20Sulfides&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Skelton,%20Jonathan%20M&rft.date=2017-03-30&rft.volume=121&rft.issue=12&rft.spage=6446&rft.epage=6454&rft.pages=6446-6454&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b12581&rft_dat=%3Cproquest_pubme%3E1914289808%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1914289808&rft_id=info:pmid/28652889&rfr_iscdi=true |