Loading…

Chemical and Lattice Stability of the Tin Sulfides

The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-depen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2017-03, Vol.121 (12), p.6446-6454
Main Authors: Skelton, Jonathan M, Burton, Lee A, Oba, Fumiyasu, Walsh, Aron
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33
cites cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33
container_end_page 6454
container_issue 12
container_start_page 6446
container_title Journal of physical chemistry. C
container_volume 121
creator Skelton, Jonathan M
Burton, Lee A
Oba, Fumiyasu
Walsh, Aron
description The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.
doi_str_mv 10.1021/acs.jpcc.6b12581
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914289808</sourcerecordid><originalsourceid>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EoqWwM6GMDKT4ETv2goQiXlIlhpbZunEc6iqPEjtI_fektFQwMPlKPt93rw5ClwRPCabkFoyfrtbGTEVOKJfkCI2JYjROE86PD3OSjtCZ9yuMOcOEnaIRlYJTKdUY0Wxpa2egiqApohmE4IyN5gFyV7mwidoyCksbLVwTzfuqdIX15-ikhMrbi_07QW-PD4vsOZ69Pr1k97MYuMQhNoIrCcBKlgtpUlXkIEvJEyJYSTgUKWaJsAZykUpuChBkgPGAJIykyjI2QXe73nWf17YwtgkdVHrduRq6jW7B6b8_jVvq9_ZT8yRVgsqh4Hpf0LUfvfVB184bW1XQ2Lb3miiSUKkk3qJ4h5qu9b6z5WENwXqrWg-q9Va13qseIle_zzsEftwOwM0O-I62fdcMtv7v-wJ9_Ipw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914289808</pqid></control><display><type>article</type><title>Chemical and Lattice Stability of the Tin Sulfides</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</creator><creatorcontrib>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</creatorcontrib><description>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.6b12581</identifier><identifier>PMID: 28652889</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6446-6454</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright © 2017 American Chemical Society 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</citedby><cites>FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</cites><orcidid>0000-0002-0395-1202 ; 0000-0001-5460-7033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28652889$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skelton, Jonathan M</creatorcontrib><creatorcontrib>Burton, Lee A</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><title>Chemical and Lattice Stability of the Tin Sulfides</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</description><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAURi0EoqWwM6GMDKT4ETv2goQiXlIlhpbZunEc6iqPEjtI_fektFQwMPlKPt93rw5ClwRPCabkFoyfrtbGTEVOKJfkCI2JYjROE86PD3OSjtCZ9yuMOcOEnaIRlYJTKdUY0Wxpa2egiqApohmE4IyN5gFyV7mwidoyCksbLVwTzfuqdIX15-ikhMrbi_07QW-PD4vsOZ69Pr1k97MYuMQhNoIrCcBKlgtpUlXkIEvJEyJYSTgUKWaJsAZykUpuChBkgPGAJIykyjI2QXe73nWf17YwtgkdVHrduRq6jW7B6b8_jVvq9_ZT8yRVgsqh4Hpf0LUfvfVB184bW1XQ2Lb3miiSUKkk3qJ4h5qu9b6z5WENwXqrWg-q9Va13qseIle_zzsEftwOwM0O-I62fdcMtv7v-wJ9_Ipw</recordid><startdate>20170330</startdate><enddate>20170330</enddate><creator>Skelton, Jonathan M</creator><creator>Burton, Lee A</creator><creator>Oba, Fumiyasu</creator><creator>Walsh, Aron</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0395-1202</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid></search><sort><creationdate>20170330</creationdate><title>Chemical and Lattice Stability of the Tin Sulfides</title><author>Skelton, Jonathan M ; Burton, Lee A ; Oba, Fumiyasu ; Walsh, Aron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skelton, Jonathan M</creatorcontrib><creatorcontrib>Burton, Lee A</creatorcontrib><creatorcontrib>Oba, Fumiyasu</creatorcontrib><creatorcontrib>Walsh, Aron</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skelton, Jonathan M</au><au>Burton, Lee A</au><au>Oba, Fumiyasu</au><au>Walsh, Aron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical and Lattice Stability of the Tin Sulfides</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2017-03-30</date><risdate>2017</risdate><volume>121</volume><issue>12</issue><spage>6446</spage><epage>6454</epage><pages>6446-6454</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>The tin sulfides represent a materials platform for earth-abundant semiconductor technologies. We present a first-principles study of the five known and proposed phases of SnS together with SnS2 and Sn2S3. Lattice-dynamics techniques are used to evaluate the dynamical stability and temperature-dependent thermodynamic free energy, and we also consider the effect of dispersion forces on the energetics. The recently identified π-cubic phase of SnS is found to be metastable with respect to the well-known orthorhombic Pnma/Cmcm equilibrium. The Cmcm phase is a low-lying saddle point between Pnma local minima on the potential-energy surface and is observed as an average structure at high temperatures. Bulk rocksalt and zincblende phases are found to be dynamically unstable, and we show that whereas rocksalt SnS can potentially be stabilized under a reduction of the lattice constant the hypothetical zincblende phase proposed in several previous studies is extremely unlikely to form. We also investigate the stability of Sn2S3 with respect to SnS and SnS2 and find that both dispersion forces and vibrational contributions to the free energy are required to explain its experimentally observed resistance to decomposition.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28652889</pmid><doi>10.1021/acs.jpcc.6b12581</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0395-1202</orcidid><orcidid>https://orcid.org/0000-0001-5460-7033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2017-03, Vol.121 (12), p.6446-6454
issn 1932-7447
1932-7455
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5479628
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Chemical and Lattice Stability of the Tin Sulfides
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20and%20Lattice%20Stability%20of%20the%20Tin%20Sulfides&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Skelton,%20Jonathan%20M&rft.date=2017-03-30&rft.volume=121&rft.issue=12&rft.spage=6446&rft.epage=6454&rft.pages=6446-6454&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.6b12581&rft_dat=%3Cproquest_pubme%3E1914289808%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a580t-c6598aa3f3b68c79dba8f854163f15ad70346ecab6785cda61aa308f843179e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1914289808&rft_id=info:pmid/28652889&rfr_iscdi=true