Loading…

Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion

Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2017-07, Vol.174 (3), p.1289-1306
Main Authors: Pini, Francesco, East, Alison K., Appia-Ayme, Corinne, Tomek, Jakub, Karunakaran, Ramakrishnan, Mendoza-Suárez, Marcela, Edwards, Anne, Terpolilli, Jason J., Roworth, Joshua, Downie, J. Allan, Poole, Philip S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-5852c7ecb39eec00efd4a62f5cd2b5e7a0a506b919d13640048775ae75b72bc23
cites
container_end_page 1306
container_issue 3
container_start_page 1289
container_title Plant physiology (Bethesda)
container_volume 174
creator Pini, Francesco
East, Alison K.
Appia-Ayme, Corinne
Tomek, Jakub
Karunakaran, Ramakrishnan
Mendoza-Suárez, Marcela
Edwards, Anne
Terpolilli, Jason J.
Roworth, Joshua
Downie, J. Allan
Poole, Philip S.
description Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial lux fusion bioreporters, specific for sugars, polyols, amino acids, organic acids, or flavonoids, have been validated in vitro and in vivo. Using different bacterial mutants (nodC and nifH), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobium-legume association. Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (nifH) nodules, particularly low levels of sucrose were observed, suggesting that plant sanctions affect carbon supply to nodules. In contrast, high myo-inositol levels were observed prior to nodule formation and also in nifH senescent nodules. Amino acid biosensors showed different patterns: a g-aminobutyrate biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch (Vicia hirsuta), producing similar results. In addition, vetch exhibited a local increase of nod gene-inducing flavonoids at sites where nodules developed subsequently. These bioreporters will be particularly helpful in understanding the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.
doi_str_mv 10.1104/pp.16.01302
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5490882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26375185</jstor_id><sourcerecordid>26375185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-5852c7ecb39eec00efd4a62f5cd2b5e7a0a506b919d13640048775ae75b72bc23</originalsourceid><addsrcrecordid>eNpVkElLBDEQRoMoOi4nz0ofBZmxkk66k4vgiBsogts1pDPVGpnpxKRH8N8bHddTFXyPr4pHyDaFEaXAD0IY0WoEtAS2RAZUlGzIBJfLZACQd5BSrZH1lJ4BMkT5KlljkishFRuQi7GxPUZnpsXY-YRd8jEVrY-F64oH9-qL22B653ucBR8zdWVCcN1j4dvixvu-uEUbMQPdJllpzTTh1tfcIPenJ3fH58PL67OL46PLoeWV6odCCmZrtE2pEC0AthNuKtYKO2GNwNqAEVA1iqoJLSsOwGVdC4O1aGrWWFZukMNFb5g3M5xY7Pr8lw7RzUx80944_T_p3JN-9K9acJVdfBTsfRVE_zLH1OuZSxanU9OhnydNpVI0i4Iyo_sL1EafUsT25wwF_SFfh6BppT_lZ3r372c_7LftDOwsgOfU-_ibV2UtqBTlO-YQilw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899113103</pqid></control><display><type>article</type><title>Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion</title><source>Oxford Journals Online</source><source>JSTOR</source><creator>Pini, Francesco ; East, Alison K. ; Appia-Ayme, Corinne ; Tomek, Jakub ; Karunakaran, Ramakrishnan ; Mendoza-Suárez, Marcela ; Edwards, Anne ; Terpolilli, Jason J. ; Roworth, Joshua ; Downie, J. Allan ; Poole, Philip S.</creator><creatorcontrib>Pini, Francesco ; East, Alison K. ; Appia-Ayme, Corinne ; Tomek, Jakub ; Karunakaran, Ramakrishnan ; Mendoza-Suárez, Marcela ; Edwards, Anne ; Terpolilli, Jason J. ; Roworth, Joshua ; Downie, J. Allan ; Poole, Philip S.</creatorcontrib><description>Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial lux fusion bioreporters, specific for sugars, polyols, amino acids, organic acids, or flavonoids, have been validated in vitro and in vivo. Using different bacterial mutants (nodC and nifH), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobium-legume association. Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (nifH) nodules, particularly low levels of sucrose were observed, suggesting that plant sanctions affect carbon supply to nodules. In contrast, high myo-inositol levels were observed prior to nodule formation and also in nifH senescent nodules. Amino acid biosensors showed different patterns: a g-aminobutyrate biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch (Vicia hirsuta), producing similar results. In addition, vetch exhibited a local increase of nod gene-inducing flavonoids at sites where nodules developed subsequently. These bioreporters will be particularly helpful in understanding the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.16.01302</identifier><identifier>PMID: 28495892</identifier><language>eng</language><publisher>United States: American Society of Plant Biologists</publisher><subject>Biosensing Techniques ; Breakthrough Technologies ; Colony Count, Microbial ; Gene Expression Regulation, Plant ; Hesperidin - analysis ; Image Processing, Computer-Assisted ; Luminescence ; Metabolome ; Nitrogen Fixation ; Pisum sativum - genetics ; Pisum sativum - metabolism ; Pisum sativum - microbiology ; Plant Exudates - metabolism ; Plant Root Nodulation ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant Roots - microbiology ; Rhizobium leguminosarum - growth &amp; development ; Rhizobium leguminosarum - physiology ; Rhizosphere ; Root Nodules, Plant - microbiology ; Symbiosis ; Time Factors ; Vicia - microbiology</subject><ispartof>Plant physiology (Bethesda), 2017-07, Vol.174 (3), p.1289-1306</ispartof><rights>2017 The author(s)</rights><rights>2017 The author(s). All Rights Reserved.</rights><rights>2017 The author(s). All Rights Reserved. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-5852c7ecb39eec00efd4a62f5cd2b5e7a0a506b919d13640048775ae75b72bc23</citedby><orcidid>0000-0003-1011-4960 ; 0000-0003-3419-1362 ; 0000-0003-4306-3346 ; 0000-0001-5087-6455 ; 0000-0003-2937-982X ; 0000-0002-2386-0658 ; 0000-0001-5323-8395 ; 0000-0002-3720-0968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26375185$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26375185$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28495892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pini, Francesco</creatorcontrib><creatorcontrib>East, Alison K.</creatorcontrib><creatorcontrib>Appia-Ayme, Corinne</creatorcontrib><creatorcontrib>Tomek, Jakub</creatorcontrib><creatorcontrib>Karunakaran, Ramakrishnan</creatorcontrib><creatorcontrib>Mendoza-Suárez, Marcela</creatorcontrib><creatorcontrib>Edwards, Anne</creatorcontrib><creatorcontrib>Terpolilli, Jason J.</creatorcontrib><creatorcontrib>Roworth, Joshua</creatorcontrib><creatorcontrib>Downie, J. Allan</creatorcontrib><creatorcontrib>Poole, Philip S.</creatorcontrib><title>Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial lux fusion bioreporters, specific for sugars, polyols, amino acids, organic acids, or flavonoids, have been validated in vitro and in vivo. Using different bacterial mutants (nodC and nifH), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobium-legume association. Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (nifH) nodules, particularly low levels of sucrose were observed, suggesting that plant sanctions affect carbon supply to nodules. In contrast, high myo-inositol levels were observed prior to nodule formation and also in nifH senescent nodules. Amino acid biosensors showed different patterns: a g-aminobutyrate biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch (Vicia hirsuta), producing similar results. In addition, vetch exhibited a local increase of nod gene-inducing flavonoids at sites where nodules developed subsequently. These bioreporters will be particularly helpful in understanding the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.</description><subject>Biosensing Techniques</subject><subject>Breakthrough Technologies</subject><subject>Colony Count, Microbial</subject><subject>Gene Expression Regulation, Plant</subject><subject>Hesperidin - analysis</subject><subject>Image Processing, Computer-Assisted</subject><subject>Luminescence</subject><subject>Metabolome</subject><subject>Nitrogen Fixation</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - metabolism</subject><subject>Pisum sativum - microbiology</subject><subject>Plant Exudates - metabolism</subject><subject>Plant Root Nodulation</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant Roots - microbiology</subject><subject>Rhizobium leguminosarum - growth &amp; development</subject><subject>Rhizobium leguminosarum - physiology</subject><subject>Rhizosphere</subject><subject>Root Nodules, Plant - microbiology</subject><subject>Symbiosis</subject><subject>Time Factors</subject><subject>Vicia - microbiology</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVkElLBDEQRoMoOi4nz0ofBZmxkk66k4vgiBsogts1pDPVGpnpxKRH8N8bHddTFXyPr4pHyDaFEaXAD0IY0WoEtAS2RAZUlGzIBJfLZACQd5BSrZH1lJ4BMkT5KlljkishFRuQi7GxPUZnpsXY-YRd8jEVrY-F64oH9-qL22B653ucBR8zdWVCcN1j4dvixvu-uEUbMQPdJllpzTTh1tfcIPenJ3fH58PL67OL46PLoeWV6odCCmZrtE2pEC0AthNuKtYKO2GNwNqAEVA1iqoJLSsOwGVdC4O1aGrWWFZukMNFb5g3M5xY7Pr8lw7RzUx80944_T_p3JN-9K9acJVdfBTsfRVE_zLH1OuZSxanU9OhnydNpVI0i4Iyo_sL1EafUsT25wwF_SFfh6BppT_lZ3r372c_7LftDOwsgOfU-_ibV2UtqBTlO-YQilw</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Pini, Francesco</creator><creator>East, Alison K.</creator><creator>Appia-Ayme, Corinne</creator><creator>Tomek, Jakub</creator><creator>Karunakaran, Ramakrishnan</creator><creator>Mendoza-Suárez, Marcela</creator><creator>Edwards, Anne</creator><creator>Terpolilli, Jason J.</creator><creator>Roworth, Joshua</creator><creator>Downie, J. Allan</creator><creator>Poole, Philip S.</creator><general>American Society of Plant Biologists</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1011-4960</orcidid><orcidid>https://orcid.org/0000-0003-3419-1362</orcidid><orcidid>https://orcid.org/0000-0003-4306-3346</orcidid><orcidid>https://orcid.org/0000-0001-5087-6455</orcidid><orcidid>https://orcid.org/0000-0003-2937-982X</orcidid><orcidid>https://orcid.org/0000-0002-2386-0658</orcidid><orcidid>https://orcid.org/0000-0001-5323-8395</orcidid><orcidid>https://orcid.org/0000-0002-3720-0968</orcidid></search><sort><creationdate>20170701</creationdate><title>Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion</title><author>Pini, Francesco ; East, Alison K. ; Appia-Ayme, Corinne ; Tomek, Jakub ; Karunakaran, Ramakrishnan ; Mendoza-Suárez, Marcela ; Edwards, Anne ; Terpolilli, Jason J. ; Roworth, Joshua ; Downie, J. Allan ; Poole, Philip S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-5852c7ecb39eec00efd4a62f5cd2b5e7a0a506b919d13640048775ae75b72bc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biosensing Techniques</topic><topic>Breakthrough Technologies</topic><topic>Colony Count, Microbial</topic><topic>Gene Expression Regulation, Plant</topic><topic>Hesperidin - analysis</topic><topic>Image Processing, Computer-Assisted</topic><topic>Luminescence</topic><topic>Metabolome</topic><topic>Nitrogen Fixation</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - metabolism</topic><topic>Pisum sativum - microbiology</topic><topic>Plant Exudates - metabolism</topic><topic>Plant Root Nodulation</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant Roots - microbiology</topic><topic>Rhizobium leguminosarum - growth &amp; development</topic><topic>Rhizobium leguminosarum - physiology</topic><topic>Rhizosphere</topic><topic>Root Nodules, Plant - microbiology</topic><topic>Symbiosis</topic><topic>Time Factors</topic><topic>Vicia - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pini, Francesco</creatorcontrib><creatorcontrib>East, Alison K.</creatorcontrib><creatorcontrib>Appia-Ayme, Corinne</creatorcontrib><creatorcontrib>Tomek, Jakub</creatorcontrib><creatorcontrib>Karunakaran, Ramakrishnan</creatorcontrib><creatorcontrib>Mendoza-Suárez, Marcela</creatorcontrib><creatorcontrib>Edwards, Anne</creatorcontrib><creatorcontrib>Terpolilli, Jason J.</creatorcontrib><creatorcontrib>Roworth, Joshua</creatorcontrib><creatorcontrib>Downie, J. Allan</creatorcontrib><creatorcontrib>Poole, Philip S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pini, Francesco</au><au>East, Alison K.</au><au>Appia-Ayme, Corinne</au><au>Tomek, Jakub</au><au>Karunakaran, Ramakrishnan</au><au>Mendoza-Suárez, Marcela</au><au>Edwards, Anne</au><au>Terpolilli, Jason J.</au><au>Roworth, Joshua</au><au>Downie, J. Allan</au><au>Poole, Philip S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>174</volume><issue>3</issue><spage>1289</spage><epage>1306</epage><pages>1289-1306</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Plants engineer the rhizosphere to their advantage by secreting various nutrients and secondary metabolites. Coupling transcriptomic and metabolomic analyses of the pea (Pisum sativum) rhizosphere, a suite of bioreporters has been developed in Rhizobium leguminosarum bv viciae strain 3841, and these detect metabolites secreted by roots in space and time. Fourteen bacterial lux fusion bioreporters, specific for sugars, polyols, amino acids, organic acids, or flavonoids, have been validated in vitro and in vivo. Using different bacterial mutants (nodC and nifH), the process of colonization and symbiosis has been analyzed, revealing compounds important in the different steps of the rhizobium-legume association. Dicarboxylates and sucrose are the main carbon sources within the nodules; in ineffective (nifH) nodules, particularly low levels of sucrose were observed, suggesting that plant sanctions affect carbon supply to nodules. In contrast, high myo-inositol levels were observed prior to nodule formation and also in nifH senescent nodules. Amino acid biosensors showed different patterns: a g-aminobutyrate biosensor was active only inside nodules, whereas the phenylalanine bioreporter showed a high signal also in the rhizosphere. The bioreporters were further validated in vetch (Vicia hirsuta), producing similar results. In addition, vetch exhibited a local increase of nod gene-inducing flavonoids at sites where nodules developed subsequently. These bioreporters will be particularly helpful in understanding the dynamics of root exudation and the role of different molecules secreted into the rhizosphere.</abstract><cop>United States</cop><pub>American Society of Plant Biologists</pub><pmid>28495892</pmid><doi>10.1104/pp.16.01302</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-1011-4960</orcidid><orcidid>https://orcid.org/0000-0003-3419-1362</orcidid><orcidid>https://orcid.org/0000-0003-4306-3346</orcidid><orcidid>https://orcid.org/0000-0001-5087-6455</orcidid><orcidid>https://orcid.org/0000-0003-2937-982X</orcidid><orcidid>https://orcid.org/0000-0002-2386-0658</orcidid><orcidid>https://orcid.org/0000-0001-5323-8395</orcidid><orcidid>https://orcid.org/0000-0002-3720-0968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2017-07, Vol.174 (3), p.1289-1306
issn 0032-0889
1532-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5490882
source Oxford Journals Online; JSTOR
subjects Biosensing Techniques
Breakthrough Technologies
Colony Count, Microbial
Gene Expression Regulation, Plant
Hesperidin - analysis
Image Processing, Computer-Assisted
Luminescence
Metabolome
Nitrogen Fixation
Pisum sativum - genetics
Pisum sativum - metabolism
Pisum sativum - microbiology
Plant Exudates - metabolism
Plant Root Nodulation
Plant Roots - genetics
Plant Roots - metabolism
Plant Roots - microbiology
Rhizobium leguminosarum - growth & development
Rhizobium leguminosarum - physiology
Rhizosphere
Root Nodules, Plant - microbiology
Symbiosis
Time Factors
Vicia - microbiology
title Bacterial Biosensors for in Vivo Spatiotemporal Mapping of Root Secretion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20Biosensors%20for%20in%20Vivo%20Spatiotemporal%20Mapping%20of%20Root%20Secretion&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Pini,%20Francesco&rft.date=2017-07-01&rft.volume=174&rft.issue=3&rft.spage=1289&rft.epage=1306&rft.pages=1289-1306&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.16.01302&rft_dat=%3Cjstor_pubme%3E26375185%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-5852c7ecb39eec00efd4a62f5cd2b5e7a0a506b919d13640048775ae75b72bc23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1899113103&rft_id=info:pmid/28495892&rft_jstor_id=26375185&rfr_iscdi=true