Loading…

Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study

Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐...

Full description

Saved in:
Bibliographic Details
Published in:Magnetic resonance in medicine 2017-12, Vol.78 (6), p.2360-2372
Main Authors: Tweten, D.J., Okamoto, R.J., Bayly, P.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43
cites cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43
container_end_page 2372
container_issue 6
container_start_page 2360
container_title Magnetic resonance in medicine
container_volume 78
creator Tweten, D.J.
Okamoto, R.J.
Bayly, P.V.
description Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy ϕ=μ1/μ2−1, and tensile anisotropy ζ=E1/E2−1. Results Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Conclusions Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
doi_str_mv 10.1002/mrm.26600
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861570686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</originalsourceid><addsrcrecordid>eNp1kc1u1TAQRi0EopfCghdAltjAIu04jp2YRaWq4k9qhVTB2pr4Tm5dJXFqJ6AseXPc3lIBEivLM8dHM_4YeyngSACUx0McjkqtAR6xjVBlWZTKVI_ZBuoKCilMdcCepXQNAMbU1VN2UDZgat3UG_bzkm4WH2mgcU68C5Gjc0vEmTil2Q84-zDy0HEcfQpzDJN3PFcpeuz5hBEHypfE2zWXdyPNuR8phRFHlx09pjnsIk5X6zt-yl0YpmW-k-bnaV6263P2pMM-0Yv785B9-_D-69mn4vzLx89np-eFqyoJRdMqko0hVdeosRbUqsa1su2M65RA0J3GbSdLoxGwkWarpWwAyOhW5kolD9nJ3jst7UBblxeO2Nsp5iXjagN6-3dn9Fd2F75bpUQ2lVnw5l4Qw82Sf8cOPjnqexwpLMmKRgtVg250Rl__g16HJeaVM2W0hEpW-lb4dk-5GFKK1D0MI8DeBmtzsPYu2My--nP6B_J3khk43gM_fE_r_0324vJir_wFcAqxOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963043462</pqid></control><display><type>article</type><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><source>Wiley</source><creator>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</creator><creatorcontrib>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</creatorcontrib><description>Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy ϕ=μ1/μ2−1, and tensile anisotropy ζ=E1/E2−1. Results Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Conclusions Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26600</identifier><identifier>PMID: 28097687</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anisotropy ; Brain - diagnostic imaging ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Data analysis ; Data processing ; Elasticity Imaging Techniques ; Estimates ; Experimental design ; Filtration ; Finite Element Analysis ; Finite element method ; heterogeneity ; Humans ; Image Processing, Computer-Assisted ; inversion algorithms ; Iron ; Low noise ; Magnetic resonance ; Magnetic Resonance Imaging ; Mathematical models ; MR elastography ; Noise ; Noise propagation ; Parameter estimation ; Propagation ; Resonance ; Shear modulus ; Shear Strength ; shear waves ; Signal-To-Noise Ratio ; Tensile Strength ; transversely isotropic material ; Traveling waves ; Wave propagation</subject><ispartof>Magnetic resonance in medicine, 2017-12, Vol.78 (6), p.2360-2372</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</citedby><cites>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28097687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tweten, D.J.</creatorcontrib><creatorcontrib>Okamoto, R.J.</creatorcontrib><creatorcontrib>Bayly, P.V.</creatorcontrib><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy ϕ=μ1/μ2−1, and tensile anisotropy ζ=E1/E2−1. Results Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Conclusions Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Elasticity Imaging Techniques</subject><subject>Estimates</subject><subject>Experimental design</subject><subject>Filtration</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>heterogeneity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>inversion algorithms</subject><subject>Iron</subject><subject>Low noise</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>MR elastography</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Parameter estimation</subject><subject>Propagation</subject><subject>Resonance</subject><subject>Shear modulus</subject><subject>Shear Strength</subject><subject>shear waves</subject><subject>Signal-To-Noise Ratio</subject><subject>Tensile Strength</subject><subject>transversely isotropic material</subject><subject>Traveling waves</subject><subject>Wave propagation</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1TAQRi0EopfCghdAltjAIu04jp2YRaWq4k9qhVTB2pr4Tm5dJXFqJ6AseXPc3lIBEivLM8dHM_4YeyngSACUx0McjkqtAR6xjVBlWZTKVI_ZBuoKCilMdcCepXQNAMbU1VN2UDZgat3UG_bzkm4WH2mgcU68C5Gjc0vEmTil2Q84-zDy0HEcfQpzDJN3PFcpeuz5hBEHypfE2zWXdyPNuR8phRFHlx09pjnsIk5X6zt-yl0YpmW-k-bnaV6263P2pMM-0Yv785B9-_D-69mn4vzLx89np-eFqyoJRdMqko0hVdeosRbUqsa1su2M65RA0J3GbSdLoxGwkWarpWwAyOhW5kolD9nJ3jst7UBblxeO2Nsp5iXjagN6-3dn9Fd2F75bpUQ2lVnw5l4Qw82Sf8cOPjnqexwpLMmKRgtVg250Rl__g16HJeaVM2W0hEpW-lb4dk-5GFKK1D0MI8DeBmtzsPYu2My--nP6B_J3khk43gM_fE_r_0324vJir_wFcAqxOQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Tweten, D.J.</creator><creator>Okamoto, R.J.</creator><creator>Bayly, P.V.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201712</creationdate><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><author>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Elasticity Imaging Techniques</topic><topic>Estimates</topic><topic>Experimental design</topic><topic>Filtration</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>heterogeneity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>inversion algorithms</topic><topic>Iron</topic><topic>Low noise</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>MR elastography</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Parameter estimation</topic><topic>Propagation</topic><topic>Resonance</topic><topic>Shear modulus</topic><topic>Shear Strength</topic><topic>shear waves</topic><topic>Signal-To-Noise Ratio</topic><topic>Tensile Strength</topic><topic>transversely isotropic material</topic><topic>Traveling waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tweten, D.J.</creatorcontrib><creatorcontrib>Okamoto, R.J.</creatorcontrib><creatorcontrib>Bayly, P.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tweten, D.J.</au><au>Okamoto, R.J.</au><au>Bayly, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-12</date><risdate>2017</risdate><volume>78</volume><issue>6</issue><spage>2360</spage><epage>2372</epage><pages>2360-2372</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy ϕ=μ1/μ2−1, and tensile anisotropy ζ=E1/E2−1. Results Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Conclusions Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28097687</pmid><doi>10.1002/mrm.26600</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0740-3194
ispartof Magnetic resonance in medicine, 2017-12, Vol.78 (6), p.2360-2372
issn 0740-3194
1522-2594
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513802
source Wiley
subjects Algorithms
Anisotropy
Brain - diagnostic imaging
Computational fluid dynamics
Computer applications
Computer Simulation
Data analysis
Data processing
Elasticity Imaging Techniques
Estimates
Experimental design
Filtration
Finite Element Analysis
Finite element method
heterogeneity
Humans
Image Processing, Computer-Assisted
inversion algorithms
Iron
Low noise
Magnetic resonance
Magnetic Resonance Imaging
Mathematical models
MR elastography
Noise
Noise propagation
Parameter estimation
Propagation
Resonance
Shear modulus
Shear Strength
shear waves
Signal-To-Noise Ratio
Tensile Strength
transversely isotropic material
Traveling waves
Wave propagation
title Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20accurate%20estimation%20of%20anisotropic%20material%20parameters%20by%20magnetic%20resonance%20elastography:%20A%20computational%20study&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Tweten,%20D.J.&rft.date=2017-12&rft.volume=78&rft.issue=6&rft.spage=2360&rft.epage=2372&rft.pages=2360-2372&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.26600&rft_dat=%3Cproquest_pubme%3E1861570686%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963043462&rft_id=info:pmid/28097687&rfr_iscdi=true