Loading…
Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study
Purpose To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Theory and Methods Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐...
Saved in:
Published in: | Magnetic resonance in medicine 2017-12, Vol.78 (6), p.2360-2372 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43 |
container_end_page | 2372 |
container_issue | 6 |
container_start_page | 2360 |
container_title | Magnetic resonance in medicine |
container_volume | 78 |
creator | Tweten, D.J. Okamoto, R.J. Bayly, P.V. |
description | Purpose
To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE).
Theory and Methods
Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy
ϕ=μ1/μ2−1, and tensile anisotropy
ζ=E1/E2−1.
Results
Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods.
Conclusions
Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine. |
doi_str_mv | 10.1002/mrm.26600 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861570686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</originalsourceid><addsrcrecordid>eNp1kc1u1TAQRi0EopfCghdAltjAIu04jp2YRaWq4k9qhVTB2pr4Tm5dJXFqJ6AseXPc3lIBEivLM8dHM_4YeyngSACUx0McjkqtAR6xjVBlWZTKVI_ZBuoKCilMdcCepXQNAMbU1VN2UDZgat3UG_bzkm4WH2mgcU68C5Gjc0vEmTil2Q84-zDy0HEcfQpzDJN3PFcpeuz5hBEHypfE2zWXdyPNuR8phRFHlx09pjnsIk5X6zt-yl0YpmW-k-bnaV6263P2pMM-0Yv785B9-_D-69mn4vzLx89np-eFqyoJRdMqko0hVdeosRbUqsa1su2M65RA0J3GbSdLoxGwkWarpWwAyOhW5kolD9nJ3jst7UBblxeO2Nsp5iXjagN6-3dn9Fd2F75bpUQ2lVnw5l4Qw82Sf8cOPjnqexwpLMmKRgtVg250Rl__g16HJeaVM2W0hEpW-lb4dk-5GFKK1D0MI8DeBmtzsPYu2My--nP6B_J3khk43gM_fE_r_0324vJir_wFcAqxOQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1963043462</pqid></control><display><type>article</type><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><source>Wiley</source><creator>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</creator><creatorcontrib>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</creatorcontrib><description>Purpose
To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE).
Theory and Methods
Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy
ϕ=μ1/μ2−1, and tensile anisotropy
ζ=E1/E2−1.
Results
Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods.
Conclusions
Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/mrm.26600</identifier><identifier>PMID: 28097687</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Anisotropy ; Brain - diagnostic imaging ; Computational fluid dynamics ; Computer applications ; Computer Simulation ; Data analysis ; Data processing ; Elasticity Imaging Techniques ; Estimates ; Experimental design ; Filtration ; Finite Element Analysis ; Finite element method ; heterogeneity ; Humans ; Image Processing, Computer-Assisted ; inversion algorithms ; Iron ; Low noise ; Magnetic resonance ; Magnetic Resonance Imaging ; Mathematical models ; MR elastography ; Noise ; Noise propagation ; Parameter estimation ; Propagation ; Resonance ; Shear modulus ; Shear Strength ; shear waves ; Signal-To-Noise Ratio ; Tensile Strength ; transversely isotropic material ; Traveling waves ; Wave propagation</subject><ispartof>Magnetic resonance in medicine, 2017-12, Vol.78 (6), p.2360-2372</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</citedby><cites>FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28097687$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tweten, D.J.</creatorcontrib><creatorcontrib>Okamoto, R.J.</creatorcontrib><creatorcontrib>Bayly, P.V.</creatorcontrib><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><title>Magnetic resonance in medicine</title><addtitle>Magn Reson Med</addtitle><description>Purpose
To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE).
Theory and Methods
Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy
ϕ=μ1/μ2−1, and tensile anisotropy
ζ=E1/E2−1.
Results
Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods.
Conclusions
Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</description><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Brain - diagnostic imaging</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Elasticity Imaging Techniques</subject><subject>Estimates</subject><subject>Experimental design</subject><subject>Filtration</subject><subject>Finite Element Analysis</subject><subject>Finite element method</subject><subject>heterogeneity</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>inversion algorithms</subject><subject>Iron</subject><subject>Low noise</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Imaging</subject><subject>Mathematical models</subject><subject>MR elastography</subject><subject>Noise</subject><subject>Noise propagation</subject><subject>Parameter estimation</subject><subject>Propagation</subject><subject>Resonance</subject><subject>Shear modulus</subject><subject>Shear Strength</subject><subject>shear waves</subject><subject>Signal-To-Noise Ratio</subject><subject>Tensile Strength</subject><subject>transversely isotropic material</subject><subject>Traveling waves</subject><subject>Wave propagation</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1TAQRi0EopfCghdAltjAIu04jp2YRaWq4k9qhVTB2pr4Tm5dJXFqJ6AseXPc3lIBEivLM8dHM_4YeyngSACUx0McjkqtAR6xjVBlWZTKVI_ZBuoKCilMdcCepXQNAMbU1VN2UDZgat3UG_bzkm4WH2mgcU68C5Gjc0vEmTil2Q84-zDy0HEcfQpzDJN3PFcpeuz5hBEHypfE2zWXdyPNuR8phRFHlx09pjnsIk5X6zt-yl0YpmW-k-bnaV6263P2pMM-0Yv785B9-_D-69mn4vzLx89np-eFqyoJRdMqko0hVdeosRbUqsa1su2M65RA0J3GbSdLoxGwkWarpWwAyOhW5kolD9nJ3jst7UBblxeO2Nsp5iXjagN6-3dn9Fd2F75bpUQ2lVnw5l4Qw82Sf8cOPjnqexwpLMmKRgtVg250Rl__g16HJeaVM2W0hEpW-lb4dk-5GFKK1D0MI8DeBmtzsPYu2My--nP6B_J3khk43gM_fE_r_0324vJir_wFcAqxOQ</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Tweten, D.J.</creator><creator>Okamoto, R.J.</creator><creator>Bayly, P.V.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201712</creationdate><title>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</title><author>Tweten, D.J. ; Okamoto, R.J. ; Bayly, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Brain - diagnostic imaging</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Elasticity Imaging Techniques</topic><topic>Estimates</topic><topic>Experimental design</topic><topic>Filtration</topic><topic>Finite Element Analysis</topic><topic>Finite element method</topic><topic>heterogeneity</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>inversion algorithms</topic><topic>Iron</topic><topic>Low noise</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Imaging</topic><topic>Mathematical models</topic><topic>MR elastography</topic><topic>Noise</topic><topic>Noise propagation</topic><topic>Parameter estimation</topic><topic>Propagation</topic><topic>Resonance</topic><topic>Shear modulus</topic><topic>Shear Strength</topic><topic>shear waves</topic><topic>Signal-To-Noise Ratio</topic><topic>Tensile Strength</topic><topic>transversely isotropic material</topic><topic>Traveling waves</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tweten, D.J.</creatorcontrib><creatorcontrib>Okamoto, R.J.</creatorcontrib><creatorcontrib>Bayly, P.V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tweten, D.J.</au><au>Okamoto, R.J.</au><au>Bayly, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn Reson Med</addtitle><date>2017-12</date><risdate>2017</risdate><volume>78</volume><issue>6</issue><spage>2360</spage><epage>2372</epage><pages>2360-2372</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><abstract>Purpose
To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE).
Theory and Methods
Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed‐form expressions for traveling waves, finite‐element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2, shear anisotropy
ϕ=μ1/μ2−1, and tensile anisotropy
ζ=E1/E2−1.
Results
Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl‐based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods.
Conclusions
Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med 78:2360–2372, 2017. © 2017 International Society for Magnetic Resonance in Medicine.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28097687</pmid><doi>10.1002/mrm.26600</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 2017-12, Vol.78 (6), p.2360-2372 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5513802 |
source | Wiley |
subjects | Algorithms Anisotropy Brain - diagnostic imaging Computational fluid dynamics Computer applications Computer Simulation Data analysis Data processing Elasticity Imaging Techniques Estimates Experimental design Filtration Finite Element Analysis Finite element method heterogeneity Humans Image Processing, Computer-Assisted inversion algorithms Iron Low noise Magnetic resonance Magnetic Resonance Imaging Mathematical models MR elastography Noise Noise propagation Parameter estimation Propagation Resonance Shear modulus Shear Strength shear waves Signal-To-Noise Ratio Tensile Strength transversely isotropic material Traveling waves Wave propagation |
title | Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Requirements%20for%20accurate%20estimation%20of%20anisotropic%20material%20parameters%20by%20magnetic%20resonance%20elastography:%20A%20computational%20study&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Tweten,%20D.J.&rft.date=2017-12&rft.volume=78&rft.issue=6&rft.spage=2360&rft.epage=2372&rft.pages=2360-2372&rft.issn=0740-3194&rft.eissn=1522-2594&rft_id=info:doi/10.1002/mrm.26600&rft_dat=%3Cproquest_pubme%3E1861570686%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4430-8b5e389e577a6a71eb58cb3bf9cf51a06f6adf3296a0a839d633800e96b3a0a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1963043462&rft_id=info:pmid/28097687&rfr_iscdi=true |