Loading…

Mutant selection in the self-incompatible plant radish (Raphanus sativus L. var. sativus) using two-step TILLING

Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant,...

Full description

Saved in:
Bibliographic Details
Published in:Breeding Science 2017, Vol.67(3), pp.268-276
Main Authors: Kohzuma, Kaori, Chiba, Motoko, Nagano, Soichiro, Anai, Toyoaki, Ueda, Miki U., Oguchi, Riichi, Shirai, Kazumasa, Hanada, Kousuke, Hikosaka, Kouki, Fujii, Nobuharu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Radish (Raphanus sativus L. var. sativus), a widely cultivated root vegetable crop, possesses a large sink organ (the root), implying that photosynthetic activity in radish can be enhanced by altering both the source and sink capacity of the plant. However, since radish is a self-incompatible plant, improved mutation-breeding strategies are needed for this crop. TILLING (Targeting Induced Local Lesions IN Genomes) is a powerful method used for reverse genetics. In this study, we developed a new TILLING strategy involving a two-step mutant selection process for mutagenized radish plants: the first selection is performed to identify a BC1M1 line, that is, progenies of M1 plants crossed with wild-type, and the second step is performed to identify BC1M1 individuals with mutations. We focused on Rubisco as a target, since Rubisco is the most abundant plant protein and a key photosynthetic enzyme. We found that the radish genome contains six RBCS genes and one pseudogene encoding small Rubisco subunits. We screened 955 EMS-induced BC1M1 lines using our newly developed TILLING strategy and obtained six mutant lines for the six RsRBCS genes, encoding proteins with four different types of amino acid substitutions. Finally, we selected a homozygous mutant and subjected it to physiological measurements.
ISSN:1344-7610
1347-3735
DOI:10.1270/jsbbs.16200