Loading…

Mitochondria-Targeted Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice

Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both...

Full description

Saved in:
Bibliographic Details
Published in:Oxidative medicine and cellular longevity 2017-01, Vol.2017 (2017), p.1-10
Main Authors: Skulachev, Vladimir P., Popova, Ekaterina N., Chernyak, Boris V., Zinovkin, Roman A., Manskikh, Vasily N., Fedorov, Artem V., Vasilieva, Tamara V., Ilyinskaya, Olga P., Zakharova, Vlada V., Demyanenko, Ilya A., Pletjushkina, Olga Yu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Oxidative stress is widely recognized as an important factor in the delayed wound healing in diabetes. However, the role of mitochondrial reactive oxygen species in this process is unknown. It was assumed that mitochondrial reactive oxygen species are involved in many wound-healing processes in both diabetic humans and animals. We have applied the mitochondria-targeted antioxidant 10-(6′-plastoquinonyl)decyltriphenylphosphonium (SkQ1) to explore the role of mitochondrial reactive oxygen species in the wound healing of genetically diabetic mice. Healing of full-thickness excisional dermal wounds in diabetic C57BL/KsJ-db−/db− mice was significantly enhanced after long-term (12 weeks) administration of SkQ1. SkQ1 accelerated wound closure and stimulated epithelization, granulation tissue formation, and vascularization. On the 7th day after wounding, SkQ1 treatment increased the number of α-smooth muscle actin-positive cells (myofibroblasts), reduced the number of neutrophils, and increased macrophage infiltration. SkQ1 lowered lipid peroxidation level but did not change the level of the circulatory IL-6 and TNF. SkQ1 pretreatment also stimulated cell migration in a scratch-wound assay in vitro under hyperglycemic condition. Thus, a mitochondria-targeted antioxidant normalized both inflammatory and regenerative phases of wound healing in diabetic mice. Our results pointed to nearly all the major steps of wound healing as the target of excessive mitochondrial reactive oxygen species production in type II diabetes.
ISSN:1942-0900
1942-0994
DOI:10.1155/2017/6408278