Loading…
The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations
Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the s...
Saved in:
Published in: | Protein science 2017-08, Vol.26 (8), p.1609-1618 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13 |
container_end_page | 1618 |
container_issue | 8 |
container_start_page | 1609 |
container_title | Protein science |
container_volume | 26 |
creator | Levy, Ariel R. Turgeman, Meital Gevorkyan‐Aiapetov, Lada Ruthstein, Sharon |
description | Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. |
doi_str_mv | 10.1002/pro.3197 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5521546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921164867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</originalsourceid><addsrcrecordid>eNp1kVtrFTEURoMo9lgFf4EEfPFlajKZycUHoZSqhUJLqeBbyGSSTspMMuZSe_z15thaL-DTR9iLlW-zAXiJ0QFGqH27xnBAsGCPwAZ3VDRc0C-PwQYJihtOKN8Dz1K6Rgh1uCVPwV7L-45wjDfg--VkYMqx6FyimqGdza0b3OzyFgYLc51OZVEe6rCuJkI9qRrBG3iYwy1-B098cldTTtDGsFRqGZw3I1zLnGocn19UexmdSVD5cTdfS1bZBZ-egydWVerFfe6Dzx-OL48-NadnH0-ODk8bXTuypus5E0JhrG0_ICs6ilhrDWmZ6Tm32nLKLevROFg1qFEwMhLWWYZJK0ivMNkH7--8axkWM2rjc91UrtEtKm5lUE7-PfFuklfhRvZ9i_uOVsGbe0EMX4tJWS4uaTPPyptQksQCEUwpYbu_Xv-DXocSfV2vUi3GtOOU_RbqGFKKxj6UwUjuDlrfQe4OWtFXf5Z_AH9dsALNHfDNzWb7X5E8vzj7KfwBuT2sJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921164867</pqid></control><display><type>article</type><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><source>Open Access: PubMed Central</source><source>Wiley</source><creator>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</creator><creatorcontrib>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</creatorcontrib><description>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3197</identifier><identifier>PMID: 28543811</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Motifs ; Apoproteins - chemistry ; Apoproteins - genetics ; Apoproteins - metabolism ; Atox1 ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cations, Monovalent ; Circular Dichroism ; Cloning, Molecular ; Computer applications ; Copper ; Copper - chemistry ; Copper - metabolism ; copper metallochaperone ; Crystallography ; Cytoplasm ; DEER ; Electron paramagnetic resonance ; Electron spin ; Electron Spin Resonance Spectroscopy ; ENM ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Golgi apparatus ; Humans ; Information dissemination ; Ion Transport ; Metal ions ; Metallochaperones - chemistry ; Metallochaperones - genetics ; Metallochaperones - metabolism ; Models, Molecular ; NMR ; Nuclear magnetic resonance ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; protein dynamics ; Protein Interaction Domains and Motifs ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Spectroscopy ; Spin labeling ; structural flexibility</subject><ispartof>Protein science, 2017-08, Vol.26 (8), p.1609-1618</ispartof><rights>2017 The Protein Society</rights><rights>2017 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</citedby><cites>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521546/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521546/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28543811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Ariel R.</creatorcontrib><creatorcontrib>Turgeman, Meital</creatorcontrib><creatorcontrib>Gevorkyan‐Aiapetov, Lada</creatorcontrib><creatorcontrib>Ruthstein, Sharon</creatorcontrib><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</description><subject>Amino Acid Motifs</subject><subject>Apoproteins - chemistry</subject><subject>Apoproteins - genetics</subject><subject>Apoproteins - metabolism</subject><subject>Atox1</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cations, Monovalent</subject><subject>Circular Dichroism</subject><subject>Cloning, Molecular</subject><subject>Computer applications</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>copper metallochaperone</subject><subject>Crystallography</subject><subject>Cytoplasm</subject><subject>DEER</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>ENM</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Golgi apparatus</subject><subject>Humans</subject><subject>Information dissemination</subject><subject>Ion Transport</subject><subject>Metal ions</subject><subject>Metallochaperones - chemistry</subject><subject>Metallochaperones - genetics</subject><subject>Metallochaperones - metabolism</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>protein dynamics</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spectroscopy</subject><subject>Spin labeling</subject><subject>structural flexibility</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kVtrFTEURoMo9lgFf4EEfPFlajKZycUHoZSqhUJLqeBbyGSSTspMMuZSe_z15thaL-DTR9iLlW-zAXiJ0QFGqH27xnBAsGCPwAZ3VDRc0C-PwQYJihtOKN8Dz1K6Rgh1uCVPwV7L-45wjDfg--VkYMqx6FyimqGdza0b3OzyFgYLc51OZVEe6rCuJkI9qRrBG3iYwy1-B098cldTTtDGsFRqGZw3I1zLnGocn19UexmdSVD5cTdfS1bZBZ-egydWVerFfe6Dzx-OL48-NadnH0-ODk8bXTuypus5E0JhrG0_ICs6ilhrDWmZ6Tm32nLKLevROFg1qFEwMhLWWYZJK0ivMNkH7--8axkWM2rjc91UrtEtKm5lUE7-PfFuklfhRvZ9i_uOVsGbe0EMX4tJWS4uaTPPyptQksQCEUwpYbu_Xv-DXocSfV2vUi3GtOOU_RbqGFKKxj6UwUjuDlrfQe4OWtFXf5Z_AH9dsALNHfDNzWb7X5E8vzj7KfwBuT2sJQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Levy, Ariel R.</creator><creator>Turgeman, Meital</creator><creator>Gevorkyan‐Aiapetov, Lada</creator><creator>Ruthstein, Sharon</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201708</creationdate><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><author>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Apoproteins - chemistry</topic><topic>Apoproteins - genetics</topic><topic>Apoproteins - metabolism</topic><topic>Atox1</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cations, Monovalent</topic><topic>Circular Dichroism</topic><topic>Cloning, Molecular</topic><topic>Computer applications</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>copper metallochaperone</topic><topic>Crystallography</topic><topic>Cytoplasm</topic><topic>DEER</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>ENM</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Golgi apparatus</topic><topic>Humans</topic><topic>Information dissemination</topic><topic>Ion Transport</topic><topic>Metal ions</topic><topic>Metallochaperones - chemistry</topic><topic>Metallochaperones - genetics</topic><topic>Metallochaperones - metabolism</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>protein dynamics</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spectroscopy</topic><topic>Spin labeling</topic><topic>structural flexibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Ariel R.</creatorcontrib><creatorcontrib>Turgeman, Meital</creatorcontrib><creatorcontrib>Gevorkyan‐Aiapetov, Lada</creatorcontrib><creatorcontrib>Ruthstein, Sharon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Ariel R.</au><au>Turgeman, Meital</au><au>Gevorkyan‐Aiapetov, Lada</au><au>Ruthstein, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>8</issue><spage>1609</spage><epage>1618</epage><pages>1609-1618</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28543811</pmid><doi>10.1002/pro.3197</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2017-08, Vol.26 (8), p.1609-1618 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5521546 |
source | Open Access: PubMed Central; Wiley |
subjects | Amino Acid Motifs Apoproteins - chemistry Apoproteins - genetics Apoproteins - metabolism Atox1 Binding Sites Carrier Proteins - chemistry Carrier Proteins - genetics Carrier Proteins - metabolism Cations, Monovalent Circular Dichroism Cloning, Molecular Computer applications Copper Copper - chemistry Copper - metabolism copper metallochaperone Crystallography Cytoplasm DEER Electron paramagnetic resonance Electron spin Electron Spin Resonance Spectroscopy ENM Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Golgi apparatus Humans Information dissemination Ion Transport Metal ions Metallochaperones - chemistry Metallochaperones - genetics Metallochaperones - metabolism Models, Molecular NMR Nuclear magnetic resonance Protein Binding Protein Conformation, alpha-Helical Protein Conformation, beta-Strand protein dynamics Protein Interaction Domains and Motifs Proteins Recombinant Proteins - chemistry Recombinant Proteins - genetics Recombinant Proteins - metabolism Spectroscopy Spin labeling structural flexibility |
title | The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20flexibility%20of%20the%20human%20copper%20chaperone%20Atox1:%20Insights%20from%20combined%20pulsed%20EPR%20studies%20and%20computations&rft.jtitle=Protein%20science&rft.au=Levy,%20Ariel%20R.&rft.date=2017-08&rft.volume=26&rft.issue=8&rft.spage=1609&rft.epage=1618&rft.pages=1609-1618&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3197&rft_dat=%3Cproquest_pubme%3E1921164867%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1921164867&rft_id=info:pmid/28543811&rfr_iscdi=true |