Loading…

The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations

Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the s...

Full description

Saved in:
Bibliographic Details
Published in:Protein science 2017-08, Vol.26 (8), p.1609-1618
Main Authors: Levy, Ariel R., Turgeman, Meital, Gevorkyan‐Aiapetov, Lada, Ruthstein, Sharon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13
cites cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13
container_end_page 1618
container_issue 8
container_start_page 1609
container_title Protein science
container_volume 26
creator Levy, Ariel R.
Turgeman, Meital
Gevorkyan‐Aiapetov, Lada
Ruthstein, Sharon
description Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.
doi_str_mv 10.1002/pro.3197
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5521546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1921164867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</originalsourceid><addsrcrecordid>eNp1kVtrFTEURoMo9lgFf4EEfPFlajKZycUHoZSqhUJLqeBbyGSSTspMMuZSe_z15thaL-DTR9iLlW-zAXiJ0QFGqH27xnBAsGCPwAZ3VDRc0C-PwQYJihtOKN8Dz1K6Rgh1uCVPwV7L-45wjDfg--VkYMqx6FyimqGdza0b3OzyFgYLc51OZVEe6rCuJkI9qRrBG3iYwy1-B098cldTTtDGsFRqGZw3I1zLnGocn19UexmdSVD5cTdfS1bZBZ-egydWVerFfe6Dzx-OL48-NadnH0-ODk8bXTuypus5E0JhrG0_ICs6ilhrDWmZ6Tm32nLKLevROFg1qFEwMhLWWYZJK0ivMNkH7--8axkWM2rjc91UrtEtKm5lUE7-PfFuklfhRvZ9i_uOVsGbe0EMX4tJWS4uaTPPyptQksQCEUwpYbu_Xv-DXocSfV2vUi3GtOOU_RbqGFKKxj6UwUjuDlrfQe4OWtFXf5Z_AH9dsALNHfDNzWb7X5E8vzj7KfwBuT2sJQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1921164867</pqid></control><display><type>article</type><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><source>Open Access: PubMed Central</source><source>Wiley</source><creator>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</creator><creatorcontrib>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</creatorcontrib><description>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3197</identifier><identifier>PMID: 28543811</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Motifs ; Apoproteins - chemistry ; Apoproteins - genetics ; Apoproteins - metabolism ; Atox1 ; Binding Sites ; Carrier Proteins - chemistry ; Carrier Proteins - genetics ; Carrier Proteins - metabolism ; Cations, Monovalent ; Circular Dichroism ; Cloning, Molecular ; Computer applications ; Copper ; Copper - chemistry ; Copper - metabolism ; copper metallochaperone ; Crystallography ; Cytoplasm ; DEER ; Electron paramagnetic resonance ; Electron spin ; Electron Spin Resonance Spectroscopy ; ENM ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Golgi apparatus ; Humans ; Information dissemination ; Ion Transport ; Metal ions ; Metallochaperones - chemistry ; Metallochaperones - genetics ; Metallochaperones - metabolism ; Models, Molecular ; NMR ; Nuclear magnetic resonance ; Protein Binding ; Protein Conformation, alpha-Helical ; Protein Conformation, beta-Strand ; protein dynamics ; Protein Interaction Domains and Motifs ; Proteins ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Spectroscopy ; Spin labeling ; structural flexibility</subject><ispartof>Protein science, 2017-08, Vol.26 (8), p.1609-1618</ispartof><rights>2017 The Protein Society</rights><rights>2017 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</citedby><cites>FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521546/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5521546/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28543811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Levy, Ariel R.</creatorcontrib><creatorcontrib>Turgeman, Meital</creatorcontrib><creatorcontrib>Gevorkyan‐Aiapetov, Lada</creatorcontrib><creatorcontrib>Ruthstein, Sharon</creatorcontrib><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</description><subject>Amino Acid Motifs</subject><subject>Apoproteins - chemistry</subject><subject>Apoproteins - genetics</subject><subject>Apoproteins - metabolism</subject><subject>Atox1</subject><subject>Binding Sites</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - genetics</subject><subject>Carrier Proteins - metabolism</subject><subject>Cations, Monovalent</subject><subject>Circular Dichroism</subject><subject>Cloning, Molecular</subject><subject>Computer applications</subject><subject>Copper</subject><subject>Copper - chemistry</subject><subject>Copper - metabolism</subject><subject>copper metallochaperone</subject><subject>Crystallography</subject><subject>Cytoplasm</subject><subject>DEER</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>ENM</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Golgi apparatus</subject><subject>Humans</subject><subject>Information dissemination</subject><subject>Ion Transport</subject><subject>Metal ions</subject><subject>Metallochaperones - chemistry</subject><subject>Metallochaperones - genetics</subject><subject>Metallochaperones - metabolism</subject><subject>Models, Molecular</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Protein Binding</subject><subject>Protein Conformation, alpha-Helical</subject><subject>Protein Conformation, beta-Strand</subject><subject>protein dynamics</subject><subject>Protein Interaction Domains and Motifs</subject><subject>Proteins</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spectroscopy</subject><subject>Spin labeling</subject><subject>structural flexibility</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kVtrFTEURoMo9lgFf4EEfPFlajKZycUHoZSqhUJLqeBbyGSSTspMMuZSe_z15thaL-DTR9iLlW-zAXiJ0QFGqH27xnBAsGCPwAZ3VDRc0C-PwQYJihtOKN8Dz1K6Rgh1uCVPwV7L-45wjDfg--VkYMqx6FyimqGdza0b3OzyFgYLc51OZVEe6rCuJkI9qRrBG3iYwy1-B098cldTTtDGsFRqGZw3I1zLnGocn19UexmdSVD5cTdfS1bZBZ-egydWVerFfe6Dzx-OL48-NadnH0-ODk8bXTuypus5E0JhrG0_ICs6ilhrDWmZ6Tm32nLKLevROFg1qFEwMhLWWYZJK0ivMNkH7--8axkWM2rjc91UrtEtKm5lUE7-PfFuklfhRvZ9i_uOVsGbe0EMX4tJWS4uaTPPyptQksQCEUwpYbu_Xv-DXocSfV2vUi3GtOOU_RbqGFKKxj6UwUjuDlrfQe4OWtFXf5Z_AH9dsALNHfDNzWb7X5E8vzj7KfwBuT2sJQ</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Levy, Ariel R.</creator><creator>Turgeman, Meital</creator><creator>Gevorkyan‐Aiapetov, Lada</creator><creator>Ruthstein, Sharon</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201708</creationdate><title>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</title><author>Levy, Ariel R. ; Turgeman, Meital ; Gevorkyan‐Aiapetov, Lada ; Ruthstein, Sharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acid Motifs</topic><topic>Apoproteins - chemistry</topic><topic>Apoproteins - genetics</topic><topic>Apoproteins - metabolism</topic><topic>Atox1</topic><topic>Binding Sites</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - genetics</topic><topic>Carrier Proteins - metabolism</topic><topic>Cations, Monovalent</topic><topic>Circular Dichroism</topic><topic>Cloning, Molecular</topic><topic>Computer applications</topic><topic>Copper</topic><topic>Copper - chemistry</topic><topic>Copper - metabolism</topic><topic>copper metallochaperone</topic><topic>Crystallography</topic><topic>Cytoplasm</topic><topic>DEER</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>ENM</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Golgi apparatus</topic><topic>Humans</topic><topic>Information dissemination</topic><topic>Ion Transport</topic><topic>Metal ions</topic><topic>Metallochaperones - chemistry</topic><topic>Metallochaperones - genetics</topic><topic>Metallochaperones - metabolism</topic><topic>Models, Molecular</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Protein Binding</topic><topic>Protein Conformation, alpha-Helical</topic><topic>Protein Conformation, beta-Strand</topic><topic>protein dynamics</topic><topic>Protein Interaction Domains and Motifs</topic><topic>Proteins</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spectroscopy</topic><topic>Spin labeling</topic><topic>structural flexibility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Levy, Ariel R.</creatorcontrib><creatorcontrib>Turgeman, Meital</creatorcontrib><creatorcontrib>Gevorkyan‐Aiapetov, Lada</creatorcontrib><creatorcontrib>Ruthstein, Sharon</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Levy, Ariel R.</au><au>Turgeman, Meital</au><au>Gevorkyan‐Aiapetov, Lada</au><au>Ruthstein, Sharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2017-08</date><risdate>2017</risdate><volume>26</volume><issue>8</issue><spage>1609</spage><epage>1618</epage><pages>1609-1618</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X‐ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site‐directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28543811</pmid><doi>10.1002/pro.3197</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2017-08, Vol.26 (8), p.1609-1618
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5521546
source Open Access: PubMed Central; Wiley
subjects Amino Acid Motifs
Apoproteins - chemistry
Apoproteins - genetics
Apoproteins - metabolism
Atox1
Binding Sites
Carrier Proteins - chemistry
Carrier Proteins - genetics
Carrier Proteins - metabolism
Cations, Monovalent
Circular Dichroism
Cloning, Molecular
Computer applications
Copper
Copper - chemistry
Copper - metabolism
copper metallochaperone
Crystallography
Cytoplasm
DEER
Electron paramagnetic resonance
Electron spin
Electron Spin Resonance Spectroscopy
ENM
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Golgi apparatus
Humans
Information dissemination
Ion Transport
Metal ions
Metallochaperones - chemistry
Metallochaperones - genetics
Metallochaperones - metabolism
Models, Molecular
NMR
Nuclear magnetic resonance
Protein Binding
Protein Conformation, alpha-Helical
Protein Conformation, beta-Strand
protein dynamics
Protein Interaction Domains and Motifs
Proteins
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Spectroscopy
Spin labeling
structural flexibility
title The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structural%20flexibility%20of%20the%20human%20copper%20chaperone%20Atox1:%20Insights%20from%20combined%20pulsed%20EPR%20studies%20and%20computations&rft.jtitle=Protein%20science&rft.au=Levy,%20Ariel%20R.&rft.date=2017-08&rft.volume=26&rft.issue=8&rft.spage=1609&rft.epage=1618&rft.pages=1609-1618&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3197&rft_dat=%3Cproquest_pubme%3E1921164867%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4387-458799a11cf5b0f946072fe327e588fcf868f750dbfabad973d374f7132935a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1921164867&rft_id=info:pmid/28543811&rfr_iscdi=true