Loading…
Influence of the shape of the micro-finite element model on the mechanical properties calculated from micro-finite element analysis
Assessing the biomechanical properties of trabecular bone is of major biological and clinical significance for the research of bone diseases, fractures and their treatments. Micro-finite element (µFE) models are becoming increasingly popular for investigating the biomechanical properties of trabecul...
Saved in:
Published in: | Experimental and therapeutic medicine 2017-08, Vol.14 (2), p.1744-1748 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Assessing the biomechanical properties of trabecular bone is of major biological and clinical significance for the research of bone diseases, fractures and their treatments. Micro-finite element (µFE) models are becoming increasingly popular for investigating the biomechanical properties of trabecular bone. The shapes of µFE models typically include cube and cylinder. Whether there are differences between cubic and cylindrical µFE models has not yet been studied. In the present study, cubic and cylindrical µFE models of human vertebral trabecular bone were constructed. A 1% strain was prescribed to the model along the superior-inferior direction. E values were calculated from these models, and paired t-tests were performed to determine whether these were any differences between E values obtained from cubic and cylindrical models. The results demonstrated that there were no statistically significant differences in the E values between cubic and cylindrical models, and there were no significant differences in Von Mises stress distributions between the two models. These findings indicated that, to construct µFE models of vertebral trabecular bone, cubic or cylindrical models were both feasible. Choosing between the cubic or cylindrical µFE model is dependent upon the specific study design. |
---|---|
ISSN: | 1792-0981 1792-1015 |
DOI: | 10.3892/etm.2017.4709 |