Loading…
E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape
Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, b...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-07, Vol.114 (29), p.E5845-E5853 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3 |
container_end_page | E5853 |
container_issue | 29 |
container_start_page | E5845 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Hart, Kevin C. Tan, Jiongyi Siemers, Kathleen A. Sim, Joo Yong Pruitt, Beth L. Nelson, W. James Gloerich, Martijn |
description | Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions. |
doi_str_mv | 10.1073/pnas.1701703114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26486701</jstor_id><sourcerecordid>26486701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYModq2ePSmBXrxM-83k51wEKbUVFnup55BJMt0ss8mYzFT63zfL1tYKIYG8z_vyfTyEPhI4JSDp2RRNOSUS6qGEsFdoRaAjjWAdvEYrgFY2irXsCL0rZQsAHVfwFh21SkgGhK1Qf9FY4zY-h4hNdHh9-RObMdxG7Kcwb_wYzIitH0fswl0oIcWC_1QBz6GUxePZx_0nDtH5ydcrzuM9TsPBUzZm8u_Rm8GMxX94fI_Rr-8XN-dXzfr68sf5t3VjGaNzI1QrXOut6pUdBIPe90PbO-qdNURax6myPUhiKbXguOGD7MBLzjoGQyc8PUZfD3Onpd9VV10lm1FPOexMvtfJBP1SiWGjb9Od5pyCELIO-PI4IKffiy-z3oWyz2GiT0vRpCNcSSV4V9GT_9BtWnKs8SrFBOOtoKpSZwfK5lRK9sPTMgT0vj-9708_91cdn__N8MT_LawCnw7AtswpP-uCVQIIfQBc2aIk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946452638</pqid></control><display><type>article</type><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><source>NCBI_PubMed Central(免费)</source><source>JSTOR Archival Journals</source><creator>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</creator><creatorcontrib>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</creatorcontrib><description>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1701703114</identifier><identifier>PMID: 28674014</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell adhesion & migration ; Cell division ; Cell size ; E-cadherin ; Epithelial cells ; Low level ; Machinery and equipment ; Mechanical stimuli ; Mechanotransduction ; Monolayers ; Morphogenesis ; Orientation ; PNAS Plus ; Recruitment ; Tension ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.E5845-E5853</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</citedby><cites>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26486701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26486701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28674014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Kevin C.</creatorcontrib><creatorcontrib>Tan, Jiongyi</creatorcontrib><creatorcontrib>Siemers, Kathleen A.</creatorcontrib><creatorcontrib>Sim, Joo Yong</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Gloerich, Martijn</creatorcontrib><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</description><subject>Biological Sciences</subject><subject>Cell adhesion & migration</subject><subject>Cell division</subject><subject>Cell size</subject><subject>E-cadherin</subject><subject>Epithelial cells</subject><subject>Low level</subject><subject>Machinery and equipment</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Monolayers</subject><subject>Morphogenesis</subject><subject>Orientation</subject><subject>PNAS Plus</subject><subject>Recruitment</subject><subject>Tension</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEcxYModq2ePSmBXrxM-83k51wEKbUVFnup55BJMt0ss8mYzFT63zfL1tYKIYG8z_vyfTyEPhI4JSDp2RRNOSUS6qGEsFdoRaAjjWAdvEYrgFY2irXsCL0rZQsAHVfwFh21SkgGhK1Qf9FY4zY-h4hNdHh9-RObMdxG7Kcwb_wYzIitH0fswl0oIcWC_1QBz6GUxePZx_0nDtH5ydcrzuM9TsPBUzZm8u_Rm8GMxX94fI_Rr-8XN-dXzfr68sf5t3VjGaNzI1QrXOut6pUdBIPe90PbO-qdNURax6myPUhiKbXguOGD7MBLzjoGQyc8PUZfD3Onpd9VV10lm1FPOexMvtfJBP1SiWGjb9Od5pyCELIO-PI4IKffiy-z3oWyz2GiT0vRpCNcSSV4V9GT_9BtWnKs8SrFBOOtoKpSZwfK5lRK9sPTMgT0vj-9708_91cdn__N8MT_LawCnw7AtswpP-uCVQIIfQBc2aIk</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Hart, Kevin C.</creator><creator>Tan, Jiongyi</creator><creator>Siemers, Kathleen A.</creator><creator>Sim, Joo Yong</creator><creator>Pruitt, Beth L.</creator><creator>Nelson, W. James</creator><creator>Gloerich, Martijn</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170718</creationdate><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><author>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences</topic><topic>Cell adhesion & migration</topic><topic>Cell division</topic><topic>Cell size</topic><topic>E-cadherin</topic><topic>Epithelial cells</topic><topic>Low level</topic><topic>Machinery and equipment</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Monolayers</topic><topic>Morphogenesis</topic><topic>Orientation</topic><topic>PNAS Plus</topic><topic>Recruitment</topic><topic>Tension</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Kevin C.</creatorcontrib><creatorcontrib>Tan, Jiongyi</creatorcontrib><creatorcontrib>Siemers, Kathleen A.</creatorcontrib><creatorcontrib>Sim, Joo Yong</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Gloerich, Martijn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, Kevin C.</au><au>Tan, Jiongyi</au><au>Siemers, Kathleen A.</au><au>Sim, Joo Yong</au><au>Pruitt, Beth L.</au><au>Nelson, W. James</au><au>Gloerich, Martijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>114</volume><issue>29</issue><spage>E5845</spage><epage>E5853</epage><pages>E5845-E5853</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28674014</pmid><doi>10.1073/pnas.1701703114</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.E5845-E5853 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530667 |
source | NCBI_PubMed Central(免费); JSTOR Archival Journals |
subjects | Biological Sciences Cell adhesion & migration Cell division Cell size E-cadherin Epithelial cells Low level Machinery and equipment Mechanical stimuli Mechanotransduction Monolayers Morphogenesis Orientation PNAS Plus Recruitment Tension Tissues |
title | E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-cadherin%20and%20LGN%20align%20epithelial%20cell%20divisions%20with%20tissue%20tension%20independently%20of%20cell%20shape&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hart,%20Kevin%20C.&rft.date=2017-07-18&rft.volume=114&rft.issue=29&rft.spage=E5845&rft.epage=E5853&rft.pages=E5845-E5853&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1701703114&rft_dat=%3Cjstor_pubme%3E26486701%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946452638&rft_id=info:pmid/28674014&rft_jstor_id=26486701&rfr_iscdi=true |