Loading…

E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape

Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, b...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-07, Vol.114 (29), p.E5845-E5853
Main Authors: Hart, Kevin C., Tan, Jiongyi, Siemers, Kathleen A., Sim, Joo Yong, Pruitt, Beth L., Nelson, W. James, Gloerich, Martijn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3
cites cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3
container_end_page E5853
container_issue 29
container_start_page E5845
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Hart, Kevin C.
Tan, Jiongyi
Siemers, Kathleen A.
Sim, Joo Yong
Pruitt, Beth L.
Nelson, W. James
Gloerich, Martijn
description Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.
doi_str_mv 10.1073/pnas.1701703114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26486701</jstor_id><sourcerecordid>26486701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</originalsourceid><addsrcrecordid>eNpdkc9rFDEcxYModq2ePSmBXrxM-83k51wEKbUVFnup55BJMt0ss8mYzFT63zfL1tYKIYG8z_vyfTyEPhI4JSDp2RRNOSUS6qGEsFdoRaAjjWAdvEYrgFY2irXsCL0rZQsAHVfwFh21SkgGhK1Qf9FY4zY-h4hNdHh9-RObMdxG7Kcwb_wYzIitH0fswl0oIcWC_1QBz6GUxePZx_0nDtH5ydcrzuM9TsPBUzZm8u_Rm8GMxX94fI_Rr-8XN-dXzfr68sf5t3VjGaNzI1QrXOut6pUdBIPe90PbO-qdNURax6myPUhiKbXguOGD7MBLzjoGQyc8PUZfD3Onpd9VV10lm1FPOexMvtfJBP1SiWGjb9Od5pyCELIO-PI4IKffiy-z3oWyz2GiT0vRpCNcSSV4V9GT_9BtWnKs8SrFBOOtoKpSZwfK5lRK9sPTMgT0vj-9708_91cdn__N8MT_LawCnw7AtswpP-uCVQIIfQBc2aIk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946452638</pqid></control><display><type>article</type><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><source>NCBI_PubMed Central(免费)</source><source>JSTOR Archival Journals</source><creator>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</creator><creatorcontrib>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</creatorcontrib><description>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1701703114</identifier><identifier>PMID: 28674014</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Cell adhesion &amp; migration ; Cell division ; Cell size ; E-cadherin ; Epithelial cells ; Low level ; Machinery and equipment ; Mechanical stimuli ; Mechanotransduction ; Monolayers ; Morphogenesis ; Orientation ; PNAS Plus ; Recruitment ; Tension ; Tissues</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.E5845-E5853</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Jul 18, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</citedby><cites>FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26486701$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26486701$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28674014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hart, Kevin C.</creatorcontrib><creatorcontrib>Tan, Jiongyi</creatorcontrib><creatorcontrib>Siemers, Kathleen A.</creatorcontrib><creatorcontrib>Sim, Joo Yong</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Gloerich, Martijn</creatorcontrib><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</description><subject>Biological Sciences</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell division</subject><subject>Cell size</subject><subject>E-cadherin</subject><subject>Epithelial cells</subject><subject>Low level</subject><subject>Machinery and equipment</subject><subject>Mechanical stimuli</subject><subject>Mechanotransduction</subject><subject>Monolayers</subject><subject>Morphogenesis</subject><subject>Orientation</subject><subject>PNAS Plus</subject><subject>Recruitment</subject><subject>Tension</subject><subject>Tissues</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc9rFDEcxYModq2ePSmBXrxM-83k51wEKbUVFnup55BJMt0ss8mYzFT63zfL1tYKIYG8z_vyfTyEPhI4JSDp2RRNOSUS6qGEsFdoRaAjjWAdvEYrgFY2irXsCL0rZQsAHVfwFh21SkgGhK1Qf9FY4zY-h4hNdHh9-RObMdxG7Kcwb_wYzIitH0fswl0oIcWC_1QBz6GUxePZx_0nDtH5ydcrzuM9TsPBUzZm8u_Rm8GMxX94fI_Rr-8XN-dXzfr68sf5t3VjGaNzI1QrXOut6pUdBIPe90PbO-qdNURax6myPUhiKbXguOGD7MBLzjoGQyc8PUZfD3Onpd9VV10lm1FPOexMvtfJBP1SiWGjb9Od5pyCELIO-PI4IKffiy-z3oWyz2GiT0vRpCNcSSV4V9GT_9BtWnKs8SrFBOOtoKpSZwfK5lRK9sPTMgT0vj-9708_91cdn__N8MT_LawCnw7AtswpP-uCVQIIfQBc2aIk</recordid><startdate>20170718</startdate><enddate>20170718</enddate><creator>Hart, Kevin C.</creator><creator>Tan, Jiongyi</creator><creator>Siemers, Kathleen A.</creator><creator>Sim, Joo Yong</creator><creator>Pruitt, Beth L.</creator><creator>Nelson, W. James</creator><creator>Gloerich, Martijn</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170718</creationdate><title>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</title><author>Hart, Kevin C. ; Tan, Jiongyi ; Siemers, Kathleen A. ; Sim, Joo Yong ; Pruitt, Beth L. ; Nelson, W. James ; Gloerich, Martijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell division</topic><topic>Cell size</topic><topic>E-cadherin</topic><topic>Epithelial cells</topic><topic>Low level</topic><topic>Machinery and equipment</topic><topic>Mechanical stimuli</topic><topic>Mechanotransduction</topic><topic>Monolayers</topic><topic>Morphogenesis</topic><topic>Orientation</topic><topic>PNAS Plus</topic><topic>Recruitment</topic><topic>Tension</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hart, Kevin C.</creatorcontrib><creatorcontrib>Tan, Jiongyi</creatorcontrib><creatorcontrib>Siemers, Kathleen A.</creatorcontrib><creatorcontrib>Sim, Joo Yong</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Nelson, W. James</creatorcontrib><creatorcontrib>Gloerich, Martijn</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hart, Kevin C.</au><au>Tan, Jiongyi</au><au>Siemers, Kathleen A.</au><au>Sim, Joo Yong</au><au>Pruitt, Beth L.</au><au>Nelson, W. James</au><au>Gloerich, Martijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-07-18</date><risdate>2017</risdate><volume>114</volume><issue>29</issue><spage>E5845</spage><epage>E5853</epage><pages>E5845-E5853</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Tissue morphogenesis requires the coordinated regulation of cellular behavior, which includes the orientation of cell division that defines the position of daughter cells in the tissue. Cell division orientation is instructed by biochemical and mechanical signals from the local tissue environment, but how those signals control mitotic spindle orientation is not fully understood. Here, we tested how mechanical tension across an epithelial monolayer is sensed to orient cell divisions. Tension across Madin–Darby canine kidney cell monolayers was increased by a low level of uniaxial stretch, which oriented cell divisions with the stretch axis irrespective of the orientation of the cell long axis. We demonstrate that stretch-induced division orientation required mechanotransduction through E-cadherin cell–cell adhesions. Increased tension on the E-cadherin complex promoted the junctional recruitment of the protein LGN, a core component of the spindle orientation machinery that binds the cytosolic tail of E-cadherin. Consequently, uniaxial stretch triggered a polarized cortical distribution of LGN. Selective disruption of trans engagement of E-cadherin in an otherwise cohesive cell monolayer, or loss of LGN expression, resulted in randomly oriented cell divisions in the presence of uniaxial stretch. Our findings indicate that E-cadherin plays a key role in sensing polarized tensile forces across the tissue and transducing this information to the spindle orientation machinery to align cell divisions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28674014</pmid><doi>10.1073/pnas.1701703114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-07, Vol.114 (29), p.E5845-E5853
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5530667
source NCBI_PubMed Central(免费); JSTOR Archival Journals
subjects Biological Sciences
Cell adhesion & migration
Cell division
Cell size
E-cadherin
Epithelial cells
Low level
Machinery and equipment
Mechanical stimuli
Mechanotransduction
Monolayers
Morphogenesis
Orientation
PNAS Plus
Recruitment
Tension
Tissues
title E-cadherin and LGN align epithelial cell divisions with tissue tension independently of cell shape
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T13%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=E-cadherin%20and%20LGN%20align%20epithelial%20cell%20divisions%20with%20tissue%20tension%20independently%20of%20cell%20shape&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hart,%20Kevin%20C.&rft.date=2017-07-18&rft.volume=114&rft.issue=29&rft.spage=E5845&rft.epage=E5853&rft.pages=E5845-E5853&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1701703114&rft_dat=%3Cjstor_pubme%3E26486701%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-6826d2ec8b8cf640bebf2bd3edca17cd538cb071c33c0d5a5f790e754940f96e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946452638&rft_id=info:pmid/28674014&rft_jstor_id=26486701&rfr_iscdi=true