Loading…

Polymorphic Nature of Human T-Cell Leukemia Virus Type 1 Particle Cores as Revealed through Characterization of a Chronically Infected Cell Line

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 cell-to-cell transmission is dependent on the release of infectious virus particles into the virological synapse. The HT...

Full description

Saved in:
Bibliographic Details
Published in:Journal of virology 2017-08, Vol.91 (16)
Main Authors: Meissner, Morgan E, Mendonça, Luiza M, Zhang, Wei, Mansky, Louis M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 cell-to-cell transmission is dependent on the release of infectious virus particles into the virological synapse. The HTLV-1 particle structure is still poorly understood, and previous studies analyzed viruses produced by transformed lymphocytic cell lines chronically infected with HTLV-1, particularly the MT-2 cell line, which harbors truncated proviruses and expresses aberrant forms of the Gag protein. In this study, we demonstrate that the chronically infected SP cell line harbors a relatively low number of proviruses, making it a more promising experimental system for the study of the HTLV-1 particle structure. We first identified the genomic sites of integration and characterized the genetic structure of the region in each provirus. We also determined that despite encoding a truncated Gag protein, only the full-length Gag protein was incorporated into virus particles. Cryo-transmission electron microscopy analyses of the purified virus particles revealed three classes of particles based upon capsid core morphology: complete cores, incomplete cores, and particles without distinct electron densities that would correlate with the capsid region of a core structure. Observed cores were generally polygonal, and virus particles were on average 115 nm in diameter. These data corroborate particle morphologies previously observed for MT-2 cells and provide evidence that the known poor infectivity of HTLV-1 particles may correlate with HTLV-1 particle populations containing few virus particles possessing a complete capsid core structure. Studies of retroviral particle core morphology have demonstrated a correlation between capsid core stability and the relative infectivity of the virus. In this study, we used cryo-transmission electron microscopy to demonstrate that HTLV-1 particles produced from a distinct chronically infected cell line are polymorphic in nature, with many particles lacking organized electron densities that would correlate with a complete core structure. These findings have important implications for infectious HTLV-1 spread, particularly in the context of cell-to-cell transmission, a critical step in HTLV-1 transmission and pathogenesis.
ISSN:0022-538X
1098-5514
DOI:10.1128/JVI.00369-17