Loading…
A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology
Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determine...
Saved in:
Published in: | Journal of healthcare engineering 2017-01, Vol.2017 (2017), p.1-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063 |
---|---|
cites | cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063 |
container_end_page | 7 |
container_issue | 2017 |
container_start_page | 1 |
container_title | Journal of healthcare engineering |
container_volume | 2017 |
creator | Faizullin, Rashat Ragimov, Aligejdar Novikova, Svetlana Tunakova, Yulia Valiev, Vsevolod |
description | Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water. |
doi_str_mv | 10.1155/2017/3471616 |
format | article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5534300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550167397</galeid><sourcerecordid>A550167397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</originalsourceid><addsrcrecordid>eNqNkcFvFCEUxonR2GbtzbMh8WKiax8wMMPFZG1aa1I1MdszYYY3O-gM1GHGZv972e626q0k5BH48fE9PkJeMnjPmJSnHFh5KoqSKaaekGMOBSy5AP30fs21PCInKf2APIQWBRPPyRHXoKSs1DFxK_oFpy462saRrlLClHzY0KlD-h0nDJOPgcaWrkfbID3vcch7ifpAL-fBBvoxui29vrvzFefR9rlMt3H8SdfYdCH2cbN9QZ61tk94cqgLcn1xvj67XF59-_T5bHW1bCQU09JqBspVHMraKWgcV7oCUde1rh0WuhTAJUcGefLW1cIxgY5bJouGtwKUWJAPe92buR7QNdlpNmRuRj_YcWui9eb_k-A7s4m_jZSiEPl_FuTNQWCMv2ZMkxl8arDvbcA4J8O0LAtVKs0eg0oFAkqZ0dd7dGN7ND60MT_e7HCzkhKYKkVubkHe7almjCmN2D74ZmB2YZtd2OYQdsZf_dvrA3wfbQbe7oHOB2dv_SPlMDPY2r80q6DSIP4APSS5kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955603075</pqid></control><display><type>article</type><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><source>Wiley-Blackwell Open Access Collection</source><creator>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod</creator><contributor>Pal, Kunal</contributor><creatorcontrib>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod ; Pal, Kunal</creatorcontrib><description>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2017/3471616</identifier><identifier>PMID: 29065586</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adolescent ; Analysis ; Child ; Deficiency Diseases - diagnosis ; Drinking water ; Drinking Water - analysis ; Female ; Humans ; Male ; Methods ; Neural networks ; Neural Networks (Computer) ; Trace Elements - deficiency ; Trace Elements - metabolism ; Trace Elements - urine</subject><ispartof>Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-7</ispartof><rights>Copyright © 2017 Yulia Tunakova et al.</rights><rights>COPYRIGHT 2017 John Wiley & Sons, Inc.</rights><rights>Copyright © 2017 Yulia Tunakova et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</citedby><cites>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</cites><orcidid>0000-0002-8826-8639 ; 0000-0001-8207-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29065586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pal, Kunal</contributor><creatorcontrib>Faizullin, Rashat</creatorcontrib><creatorcontrib>Ragimov, Aligejdar</creatorcontrib><creatorcontrib>Novikova, Svetlana</creatorcontrib><creatorcontrib>Tunakova, Yulia</creatorcontrib><creatorcontrib>Valiev, Vsevolod</creatorcontrib><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</description><subject>Adolescent</subject><subject>Analysis</subject><subject>Child</subject><subject>Deficiency Diseases - diagnosis</subject><subject>Drinking water</subject><subject>Drinking Water - analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Trace Elements - deficiency</subject><subject>Trace Elements - metabolism</subject><subject>Trace Elements - urine</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkcFvFCEUxonR2GbtzbMh8WKiax8wMMPFZG1aa1I1MdszYYY3O-gM1GHGZv972e626q0k5BH48fE9PkJeMnjPmJSnHFh5KoqSKaaekGMOBSy5AP30fs21PCInKf2APIQWBRPPyRHXoKSs1DFxK_oFpy462saRrlLClHzY0KlD-h0nDJOPgcaWrkfbID3vcch7ifpAL-fBBvoxui29vrvzFefR9rlMt3H8SdfYdCH2cbN9QZ61tk94cqgLcn1xvj67XF59-_T5bHW1bCQU09JqBspVHMraKWgcV7oCUde1rh0WuhTAJUcGefLW1cIxgY5bJouGtwKUWJAPe92buR7QNdlpNmRuRj_YcWui9eb_k-A7s4m_jZSiEPl_FuTNQWCMv2ZMkxl8arDvbcA4J8O0LAtVKs0eg0oFAkqZ0dd7dGN7ND60MT_e7HCzkhKYKkVubkHe7almjCmN2D74ZmB2YZtd2OYQdsZf_dvrA3wfbQbe7oHOB2dv_SPlMDPY2r80q6DSIP4APSS5kQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Faizullin, Rashat</creator><creator>Ragimov, Aligejdar</creator><creator>Novikova, Svetlana</creator><creator>Tunakova, Yulia</creator><creator>Valiev, Vsevolod</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley & Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8826-8639</orcidid><orcidid>https://orcid.org/0000-0001-8207-1010</orcidid></search><sort><creationdate>20170101</creationdate><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><author>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Analysis</topic><topic>Child</topic><topic>Deficiency Diseases - diagnosis</topic><topic>Drinking water</topic><topic>Drinking Water - analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Trace Elements - deficiency</topic><topic>Trace Elements - metabolism</topic><topic>Trace Elements - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faizullin, Rashat</creatorcontrib><creatorcontrib>Ragimov, Aligejdar</creatorcontrib><creatorcontrib>Novikova, Svetlana</creatorcontrib><creatorcontrib>Tunakova, Yulia</creatorcontrib><creatorcontrib>Valiev, Vsevolod</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faizullin, Rashat</au><au>Ragimov, Aligejdar</au><au>Novikova, Svetlana</au><au>Tunakova, Yulia</au><au>Valiev, Vsevolod</au><au>Pal, Kunal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29065586</pmid><doi>10.1155/2017/3471616</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8826-8639</orcidid><orcidid>https://orcid.org/0000-0001-8207-1010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-2295 |
ispartof | Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-7 |
issn | 2040-2295 2040-2309 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5534300 |
source | Wiley-Blackwell Open Access Collection |
subjects | Adolescent Analysis Child Deficiency Diseases - diagnosis Drinking water Drinking Water - analysis Female Humans Male Methods Neural networks Neural Networks (Computer) Trace Elements - deficiency Trace Elements - metabolism Trace Elements - urine |
title | A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Assessing%20the%20Retention%20of%20Trace%20Elements%20in%20Human%20Body%20Using%20Neural%20Network%20Technology&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Faizullin,%20Rashat&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2017/3471616&rft_dat=%3Cgale_pubme%3EA550167397%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955603075&rft_id=info:pmid/29065586&rft_galeid=A550167397&rfr_iscdi=true |