Loading…

A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology

Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of healthcare engineering 2017-01, Vol.2017 (2017), p.1-7
Main Authors: Faizullin, Rashat, Ragimov, Aligejdar, Novikova, Svetlana, Tunakova, Yulia, Valiev, Vsevolod
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063
cites cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063
container_end_page 7
container_issue 2017
container_start_page 1
container_title Journal of healthcare engineering
container_volume 2017
creator Faizullin, Rashat
Ragimov, Aligejdar
Novikova, Svetlana
Tunakova, Yulia
Valiev, Vsevolod
description Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.
doi_str_mv 10.1155/2017/3471616
format article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5534300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A550167397</galeid><sourcerecordid>A550167397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</originalsourceid><addsrcrecordid>eNqNkcFvFCEUxonR2GbtzbMh8WKiax8wMMPFZG1aa1I1MdszYYY3O-gM1GHGZv972e626q0k5BH48fE9PkJeMnjPmJSnHFh5KoqSKaaekGMOBSy5AP30fs21PCInKf2APIQWBRPPyRHXoKSs1DFxK_oFpy462saRrlLClHzY0KlD-h0nDJOPgcaWrkfbID3vcch7ifpAL-fBBvoxui29vrvzFefR9rlMt3H8SdfYdCH2cbN9QZ61tk94cqgLcn1xvj67XF59-_T5bHW1bCQU09JqBspVHMraKWgcV7oCUde1rh0WuhTAJUcGefLW1cIxgY5bJouGtwKUWJAPe92buR7QNdlpNmRuRj_YcWui9eb_k-A7s4m_jZSiEPl_FuTNQWCMv2ZMkxl8arDvbcA4J8O0LAtVKs0eg0oFAkqZ0dd7dGN7ND60MT_e7HCzkhKYKkVubkHe7almjCmN2D74ZmB2YZtd2OYQdsZf_dvrA3wfbQbe7oHOB2dv_SPlMDPY2r80q6DSIP4APSS5kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955603075</pqid></control><display><type>article</type><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><source>Wiley-Blackwell Open Access Collection</source><creator>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod</creator><contributor>Pal, Kunal</contributor><creatorcontrib>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod ; Pal, Kunal</creatorcontrib><description>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</description><identifier>ISSN: 2040-2295</identifier><identifier>EISSN: 2040-2309</identifier><identifier>DOI: 10.1155/2017/3471616</identifier><identifier>PMID: 29065586</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adolescent ; Analysis ; Child ; Deficiency Diseases - diagnosis ; Drinking water ; Drinking Water - analysis ; Female ; Humans ; Male ; Methods ; Neural networks ; Neural Networks (Computer) ; Trace Elements - deficiency ; Trace Elements - metabolism ; Trace Elements - urine</subject><ispartof>Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-7</ispartof><rights>Copyright © 2017 Yulia Tunakova et al.</rights><rights>COPYRIGHT 2017 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2017 Yulia Tunakova et al. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</citedby><cites>FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</cites><orcidid>0000-0002-8826-8639 ; 0000-0001-8207-1010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29065586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pal, Kunal</contributor><creatorcontrib>Faizullin, Rashat</creatorcontrib><creatorcontrib>Ragimov, Aligejdar</creatorcontrib><creatorcontrib>Novikova, Svetlana</creatorcontrib><creatorcontrib>Tunakova, Yulia</creatorcontrib><creatorcontrib>Valiev, Vsevolod</creatorcontrib><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><title>Journal of healthcare engineering</title><addtitle>J Healthc Eng</addtitle><description>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</description><subject>Adolescent</subject><subject>Analysis</subject><subject>Child</subject><subject>Deficiency Diseases - diagnosis</subject><subject>Drinking water</subject><subject>Drinking Water - analysis</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Trace Elements - deficiency</subject><subject>Trace Elements - metabolism</subject><subject>Trace Elements - urine</subject><issn>2040-2295</issn><issn>2040-2309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkcFvFCEUxonR2GbtzbMh8WKiax8wMMPFZG1aa1I1MdszYYY3O-gM1GHGZv972e626q0k5BH48fE9PkJeMnjPmJSnHFh5KoqSKaaekGMOBSy5AP30fs21PCInKf2APIQWBRPPyRHXoKSs1DFxK_oFpy462saRrlLClHzY0KlD-h0nDJOPgcaWrkfbID3vcch7ifpAL-fBBvoxui29vrvzFefR9rlMt3H8SdfYdCH2cbN9QZ61tk94cqgLcn1xvj67XF59-_T5bHW1bCQU09JqBspVHMraKWgcV7oCUde1rh0WuhTAJUcGefLW1cIxgY5bJouGtwKUWJAPe92buR7QNdlpNmRuRj_YcWui9eb_k-A7s4m_jZSiEPl_FuTNQWCMv2ZMkxl8arDvbcA4J8O0LAtVKs0eg0oFAkqZ0dd7dGN7ND60MT_e7HCzkhKYKkVubkHe7almjCmN2D74ZmB2YZtd2OYQdsZf_dvrA3wfbQbe7oHOB2dv_SPlMDPY2r80q6DSIP4APSS5kQ</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Faizullin, Rashat</creator><creator>Ragimov, Aligejdar</creator><creator>Novikova, Svetlana</creator><creator>Tunakova, Yulia</creator><creator>Valiev, Vsevolod</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8826-8639</orcidid><orcidid>https://orcid.org/0000-0001-8207-1010</orcidid></search><sort><creationdate>20170101</creationdate><title>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</title><author>Faizullin, Rashat ; Ragimov, Aligejdar ; Novikova, Svetlana ; Tunakova, Yulia ; Valiev, Vsevolod</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adolescent</topic><topic>Analysis</topic><topic>Child</topic><topic>Deficiency Diseases - diagnosis</topic><topic>Drinking water</topic><topic>Drinking Water - analysis</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Trace Elements - deficiency</topic><topic>Trace Elements - metabolism</topic><topic>Trace Elements - urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faizullin, Rashat</creatorcontrib><creatorcontrib>Ragimov, Aligejdar</creatorcontrib><creatorcontrib>Novikova, Svetlana</creatorcontrib><creatorcontrib>Tunakova, Yulia</creatorcontrib><creatorcontrib>Valiev, Vsevolod</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of healthcare engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faizullin, Rashat</au><au>Ragimov, Aligejdar</au><au>Novikova, Svetlana</au><au>Tunakova, Yulia</au><au>Valiev, Vsevolod</au><au>Pal, Kunal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology</atitle><jtitle>Journal of healthcare engineering</jtitle><addtitle>J Healthc Eng</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>2017</volume><issue>2017</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>2040-2295</issn><eissn>2040-2309</eissn><abstract>Models that describe the trace element status formation in the human organism are essential for a correction of micromineral (trace elements) deficiency. A direct trace element retention assessment in the body is difficult due to the many internal mechanisms. The trace element retention is determined by the amount and the ratio of incoming and excreted substance. So, the concentration of trace elements in drinking water characterizes the intake, whereas the element concentration in urine characterizes the excretion. This system can be interpreted as three interrelated elements that are in equilibrium. Since many relationships in the system are not known, the use of standard mathematical models is difficult. The artificial neural network use is suitable for constructing a model in the best way because it can take into account all dependencies in the system implicitly and process inaccurate and incomplete data. We created several neural network models to describe the retentions of trace elements in the human body. On the model basis, we can calculate the microelement levels in the body, knowing the trace element levels in drinking water and urine. These results can be used in health care to provide the population with safe drinking water.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>29065586</pmid><doi>10.1155/2017/3471616</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8826-8639</orcidid><orcidid>https://orcid.org/0000-0001-8207-1010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-2295
ispartof Journal of healthcare engineering, 2017-01, Vol.2017 (2017), p.1-7
issn 2040-2295
2040-2309
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5534300
source Wiley-Blackwell Open Access Collection
subjects Adolescent
Analysis
Child
Deficiency Diseases - diagnosis
Drinking water
Drinking Water - analysis
Female
Humans
Male
Methods
Neural networks
Neural Networks (Computer)
Trace Elements - deficiency
Trace Elements - metabolism
Trace Elements - urine
title A Method for Assessing the Retention of Trace Elements in Human Body Using Neural Network Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A59%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Assessing%20the%20Retention%20of%20Trace%20Elements%20in%20Human%20Body%20Using%20Neural%20Network%20Technology&rft.jtitle=Journal%20of%20healthcare%20engineering&rft.au=Faizullin,%20Rashat&rft.date=2017-01-01&rft.volume=2017&rft.issue=2017&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=2040-2295&rft.eissn=2040-2309&rft_id=info:doi/10.1155/2017/3471616&rft_dat=%3Cgale_pubme%3EA550167397%3C/gale_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-a9106d8207bd60cd269803bbb9bde49730252e102e12fdb3d13ed2a154c2f3063%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955603075&rft_id=info:pmid/29065586&rft_galeid=A550167397&rfr_iscdi=true