Loading…
Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells
Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemuraf...
Saved in:
Published in: | Molecular cancer therapeutics 2017-08, Vol.16 (8), p.1596-1609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773 |
---|---|
cites | cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773 |
container_end_page | 1609 |
container_issue | 8 |
container_start_page | 1596 |
container_title | Molecular cancer therapeutics |
container_volume | 16 |
creator | Ross, Kayleigh C Andrews, Andrew J Marion, Christopher D Yen, Timothy J Bhattacharjee, Vikram |
description | Metastatic melanoma cells commonly acquire resistance to
V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of
V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT.
. |
doi_str_mv | 10.1158/1535-7163.MCT-16-0798 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899117302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</originalsourceid><addsrcrecordid>eNpdUsFu1DAQtRCIloVPAFniwqEpHid2kgtSG9Gy0hZQW87WrON0XSX21k5A-z98aJ1uqYCLbb2Z9zxvZgh5C-wYQFQfQeQiK0HmxxfNdQYyY2VdPSOHCa-ySkDx_OG9zzkgr2K8ZQyqmsNLcsArwRjP5SH5vWyNG21nNY7WO-o7Om4MvTLBOkNPrY87l4BoI_2O4-YX7ihGirQJdkycnjZ-2HqXNGbq6eXJGV26jV3b0Qd6OfNGdNrMwQvTo_MDHiUlp4NJH-ojiq6lX73Lrgbsk5pJx2pyN7SZaeEBiK_Jiw77aN483gvy4-zzdfMlW307XzYnq0wXNYxZjaU2nTGtrEVyLsuW61bzNULOtDDcdOuWpwhn0EoJ3EhddCA7rBFlV5b5gnza626n9WBanVwF7NU22AHDTnm06t-Isxt1438qIYpClHUS-PAoEPzdZOKoBht1soDO-Cmq1P8aoMxT7xfk_X-pt34KLtlTUFcFqyDnc0Vin6WDjzGY7qkYYGreAzXPWM0zVmkPFEg170HivfvbyRPrz-Dze7AtsQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984081327</pqid></control><display><type>article</type><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><source>EZB Electronic Journals Library</source><creator>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</creator><creatorcontrib>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</creatorcontrib><description>Metastatic melanoma cells commonly acquire resistance to
V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of
V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT.
.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-16-0798</identifier><identifier>PMID: 28500236</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Biosynthesis ; Biosynthetic Pathways - drug effects ; Biotechnology ; Cancer ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Deoxycytidine - analogs & derivatives ; Deoxycytidine - pharmacology ; Deoxycytidine - therapeutic use ; Deoxyribonucleic acid ; DNA ; DNA damage ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Folic acid ; Gemcitabine ; Humans ; Imidazoles - pharmacology ; Imidazoles - therapeutic use ; Indoles - pharmacology ; Indoles - therapeutic use ; Inhibitors ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - pathology ; Melanoma ; Melanoma - drug therapy ; Melanoma - pathology ; Metastases ; Methotrexate ; Methotrexate - pharmacology ; Methotrexate - therapeutic use ; Models, Biological ; Oximes - pharmacology ; Oximes - therapeutic use ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - pathology ; Phosphoglycerate Dehydrogenase - metabolism ; Proto-Oncogene Proteins B-raf - antagonists & inhibitors ; Proto-Oncogene Proteins B-raf - metabolism ; Serine ; Serine - metabolism ; siRNA ; Sulfonamides - pharmacology ; Sulfonamides - therapeutic use ; Tumor cell lines ; Tumor cells ; Vemurafenib</subject><ispartof>Molecular cancer therapeutics, 2017-08, Vol.16 (8), p.1596-1609</ispartof><rights>2017 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</citedby><cites>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Kayleigh C</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><creatorcontrib>Marion, Christopher D</creatorcontrib><creatorcontrib>Yen, Timothy J</creatorcontrib><creatorcontrib>Bhattacharjee, Vikram</creatorcontrib><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Metastatic melanoma cells commonly acquire resistance to
V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of
V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT.
.</description><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Deoxycytidine - analogs & derivatives</subject><subject>Deoxycytidine - pharmacology</subject><subject>Deoxycytidine - therapeutic use</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Folic acid</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Imidazoles - pharmacology</subject><subject>Imidazoles - therapeutic use</subject><subject>Indoles - pharmacology</subject><subject>Indoles - therapeutic use</subject><subject>Inhibitors</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - pathology</subject><subject>Melanoma</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - pathology</subject><subject>Metastases</subject><subject>Methotrexate</subject><subject>Methotrexate - pharmacology</subject><subject>Methotrexate - therapeutic use</subject><subject>Models, Biological</subject><subject>Oximes - pharmacology</subject><subject>Oximes - therapeutic use</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Phosphoglycerate Dehydrogenase - metabolism</subject><subject>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Serine</subject><subject>Serine - metabolism</subject><subject>siRNA</subject><subject>Sulfonamides - pharmacology</subject><subject>Sulfonamides - therapeutic use</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Vemurafenib</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdUsFu1DAQtRCIloVPAFniwqEpHid2kgtSG9Gy0hZQW87WrON0XSX21k5A-z98aJ1uqYCLbb2Z9zxvZgh5C-wYQFQfQeQiK0HmxxfNdQYyY2VdPSOHCa-ySkDx_OG9zzkgr2K8ZQyqmsNLcsArwRjP5SH5vWyNG21nNY7WO-o7Om4MvTLBOkNPrY87l4BoI_2O4-YX7ihGirQJdkycnjZ-2HqXNGbq6eXJGV26jV3b0Qd6OfNGdNrMwQvTo_MDHiUlp4NJH-ojiq6lX73Lrgbsk5pJx2pyN7SZaeEBiK_Jiw77aN483gvy4-zzdfMlW307XzYnq0wXNYxZjaU2nTGtrEVyLsuW61bzNULOtDDcdOuWpwhn0EoJ3EhddCA7rBFlV5b5gnza626n9WBanVwF7NU22AHDTnm06t-Isxt1438qIYpClHUS-PAoEPzdZOKoBht1soDO-Cmq1P8aoMxT7xfk_X-pt34KLtlTUFcFqyDnc0Vin6WDjzGY7qkYYGreAzXPWM0zVmkPFEg170HivfvbyRPrz-Dze7AtsQI</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Ross, Kayleigh C</creator><creator>Andrews, Andrew J</creator><creator>Marion, Christopher D</creator><creator>Yen, Timothy J</creator><creator>Bhattacharjee, Vikram</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><author>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Deoxycytidine - analogs & derivatives</topic><topic>Deoxycytidine - pharmacology</topic><topic>Deoxycytidine - therapeutic use</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Folic acid</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Imidazoles - pharmacology</topic><topic>Imidazoles - therapeutic use</topic><topic>Indoles - pharmacology</topic><topic>Indoles - therapeutic use</topic><topic>Inhibitors</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - pathology</topic><topic>Melanoma</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - pathology</topic><topic>Metastases</topic><topic>Methotrexate</topic><topic>Methotrexate - pharmacology</topic><topic>Methotrexate - therapeutic use</topic><topic>Models, Biological</topic><topic>Oximes - pharmacology</topic><topic>Oximes - therapeutic use</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Phosphoglycerate Dehydrogenase - metabolism</topic><topic>Proto-Oncogene Proteins B-raf - antagonists & inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Serine</topic><topic>Serine - metabolism</topic><topic>siRNA</topic><topic>Sulfonamides - pharmacology</topic><topic>Sulfonamides - therapeutic use</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Vemurafenib</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Kayleigh C</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><creatorcontrib>Marion, Christopher D</creatorcontrib><creatorcontrib>Yen, Timothy J</creatorcontrib><creatorcontrib>Bhattacharjee, Vikram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Kayleigh C</au><au>Andrews, Andrew J</au><au>Marion, Christopher D</au><au>Yen, Timothy J</au><au>Bhattacharjee, Vikram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>16</volume><issue>8</issue><spage>1596</spage><epage>1609</epage><pages>1596-1609</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Metastatic melanoma cells commonly acquire resistance to
V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of
V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT.
.</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>28500236</pmid><doi>10.1158/1535-7163.MCT-16-0798</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1535-7163 |
ispartof | Molecular cancer therapeutics, 2017-08, Vol.16 (8), p.1596-1609 |
issn | 1535-7163 1538-8514 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544579 |
source | EZB Electronic Journals Library |
subjects | Biosynthesis Biosynthetic Pathways - drug effects Biotechnology Cancer Carcinoma, Non-Small-Cell Lung - drug therapy Carcinoma, Non-Small-Cell Lung - pathology Cell Line, Tumor Cell Proliferation - drug effects Deoxycytidine - analogs & derivatives Deoxycytidine - pharmacology Deoxycytidine - therapeutic use Deoxyribonucleic acid DNA DNA damage Drug resistance Drug Resistance, Neoplasm - drug effects Folic acid Gemcitabine Humans Imidazoles - pharmacology Imidazoles - therapeutic use Indoles - pharmacology Indoles - therapeutic use Inhibitors Lung cancer Lung Neoplasms - drug therapy Lung Neoplasms - pathology Melanoma Melanoma - drug therapy Melanoma - pathology Metastases Methotrexate Methotrexate - pharmacology Methotrexate - therapeutic use Models, Biological Oximes - pharmacology Oximes - therapeutic use Pancreatic cancer Pancreatic Neoplasms - drug therapy Pancreatic Neoplasms - pathology Phosphoglycerate Dehydrogenase - metabolism Proto-Oncogene Proteins B-raf - antagonists & inhibitors Proto-Oncogene Proteins B-raf - metabolism Serine Serine - metabolism siRNA Sulfonamides - pharmacology Sulfonamides - therapeutic use Tumor cell lines Tumor cells Vemurafenib |
title | Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20Serine%20Biosynthesis%20Pathway%20as%20a%20Critical%20Component%20of%20BRAF%20Inhibitor%20Resistance%20of%20Melanoma,%20Pancreatic,%20and%20Non-Small%20Cell%20Lung%20Cancer%20Cells&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Ross,%20Kayleigh%20C&rft.date=2017-08-01&rft.volume=16&rft.issue=8&rft.spage=1596&rft.epage=1609&rft.pages=1596-1609&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-16-0798&rft_dat=%3Cproquest_pubme%3E1899117302%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984081327&rft_id=info:pmid/28500236&rfr_iscdi=true |