Loading…

Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells

Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemuraf...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cancer therapeutics 2017-08, Vol.16 (8), p.1596-1609
Main Authors: Ross, Kayleigh C, Andrews, Andrew J, Marion, Christopher D, Yen, Timothy J, Bhattacharjee, Vikram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773
cites cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773
container_end_page 1609
container_issue 8
container_start_page 1596
container_title Molecular cancer therapeutics
container_volume 16
creator Ross, Kayleigh C
Andrews, Andrew J
Marion, Christopher D
Yen, Timothy J
Bhattacharjee, Vikram
description Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT. .
doi_str_mv 10.1158/1535-7163.MCT-16-0798
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1899117302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</originalsourceid><addsrcrecordid>eNpdUsFu1DAQtRCIloVPAFniwqEpHid2kgtSG9Gy0hZQW87WrON0XSX21k5A-z98aJ1uqYCLbb2Z9zxvZgh5C-wYQFQfQeQiK0HmxxfNdQYyY2VdPSOHCa-ySkDx_OG9zzkgr2K8ZQyqmsNLcsArwRjP5SH5vWyNG21nNY7WO-o7Om4MvTLBOkNPrY87l4BoI_2O4-YX7ihGirQJdkycnjZ-2HqXNGbq6eXJGV26jV3b0Qd6OfNGdNrMwQvTo_MDHiUlp4NJH-ojiq6lX73Lrgbsk5pJx2pyN7SZaeEBiK_Jiw77aN483gvy4-zzdfMlW307XzYnq0wXNYxZjaU2nTGtrEVyLsuW61bzNULOtDDcdOuWpwhn0EoJ3EhddCA7rBFlV5b5gnza626n9WBanVwF7NU22AHDTnm06t-Isxt1438qIYpClHUS-PAoEPzdZOKoBht1soDO-Cmq1P8aoMxT7xfk_X-pt34KLtlTUFcFqyDnc0Vin6WDjzGY7qkYYGreAzXPWM0zVmkPFEg170HivfvbyRPrz-Dze7AtsQI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984081327</pqid></control><display><type>article</type><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><source>EZB Electronic Journals Library</source><creator>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</creator><creatorcontrib>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</creatorcontrib><description>Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT. .</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-16-0798</identifier><identifier>PMID: 28500236</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Biosynthesis ; Biosynthetic Pathways - drug effects ; Biotechnology ; Cancer ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Deoxycytidine - analogs &amp; derivatives ; Deoxycytidine - pharmacology ; Deoxycytidine - therapeutic use ; Deoxyribonucleic acid ; DNA ; DNA damage ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Folic acid ; Gemcitabine ; Humans ; Imidazoles - pharmacology ; Imidazoles - therapeutic use ; Indoles - pharmacology ; Indoles - therapeutic use ; Inhibitors ; Lung cancer ; Lung Neoplasms - drug therapy ; Lung Neoplasms - pathology ; Melanoma ; Melanoma - drug therapy ; Melanoma - pathology ; Metastases ; Methotrexate ; Methotrexate - pharmacology ; Methotrexate - therapeutic use ; Models, Biological ; Oximes - pharmacology ; Oximes - therapeutic use ; Pancreatic cancer ; Pancreatic Neoplasms - drug therapy ; Pancreatic Neoplasms - pathology ; Phosphoglycerate Dehydrogenase - metabolism ; Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors ; Proto-Oncogene Proteins B-raf - metabolism ; Serine ; Serine - metabolism ; siRNA ; Sulfonamides - pharmacology ; Sulfonamides - therapeutic use ; Tumor cell lines ; Tumor cells ; Vemurafenib</subject><ispartof>Molecular cancer therapeutics, 2017-08, Vol.16 (8), p.1596-1609</ispartof><rights>2017 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Aug 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</citedby><cites>FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28500236$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ross, Kayleigh C</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><creatorcontrib>Marion, Christopher D</creatorcontrib><creatorcontrib>Yen, Timothy J</creatorcontrib><creatorcontrib>Bhattacharjee, Vikram</creatorcontrib><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT. .</description><subject>Biosynthesis</subject><subject>Biosynthetic Pathways - drug effects</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Deoxycytidine - analogs &amp; derivatives</subject><subject>Deoxycytidine - pharmacology</subject><subject>Deoxycytidine - therapeutic use</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Folic acid</subject><subject>Gemcitabine</subject><subject>Humans</subject><subject>Imidazoles - pharmacology</subject><subject>Imidazoles - therapeutic use</subject><subject>Indoles - pharmacology</subject><subject>Indoles - therapeutic use</subject><subject>Inhibitors</subject><subject>Lung cancer</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - pathology</subject><subject>Melanoma</subject><subject>Melanoma - drug therapy</subject><subject>Melanoma - pathology</subject><subject>Metastases</subject><subject>Methotrexate</subject><subject>Methotrexate - pharmacology</subject><subject>Methotrexate - therapeutic use</subject><subject>Models, Biological</subject><subject>Oximes - pharmacology</subject><subject>Oximes - therapeutic use</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - drug therapy</subject><subject>Pancreatic Neoplasms - pathology</subject><subject>Phosphoglycerate Dehydrogenase - metabolism</subject><subject>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins B-raf - metabolism</subject><subject>Serine</subject><subject>Serine - metabolism</subject><subject>siRNA</subject><subject>Sulfonamides - pharmacology</subject><subject>Sulfonamides - therapeutic use</subject><subject>Tumor cell lines</subject><subject>Tumor cells</subject><subject>Vemurafenib</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdUsFu1DAQtRCIloVPAFniwqEpHid2kgtSG9Gy0hZQW87WrON0XSX21k5A-z98aJ1uqYCLbb2Z9zxvZgh5C-wYQFQfQeQiK0HmxxfNdQYyY2VdPSOHCa-ySkDx_OG9zzkgr2K8ZQyqmsNLcsArwRjP5SH5vWyNG21nNY7WO-o7Om4MvTLBOkNPrY87l4BoI_2O4-YX7ihGirQJdkycnjZ-2HqXNGbq6eXJGV26jV3b0Qd6OfNGdNrMwQvTo_MDHiUlp4NJH-ojiq6lX73Lrgbsk5pJx2pyN7SZaeEBiK_Jiw77aN483gvy4-zzdfMlW307XzYnq0wXNYxZjaU2nTGtrEVyLsuW61bzNULOtDDcdOuWpwhn0EoJ3EhddCA7rBFlV5b5gnza626n9WBanVwF7NU22AHDTnm06t-Isxt1438qIYpClHUS-PAoEPzdZOKoBht1soDO-Cmq1P8aoMxT7xfk_X-pt34KLtlTUFcFqyDnc0Vin6WDjzGY7qkYYGreAzXPWM0zVmkPFEg170HivfvbyRPrz-Dze7AtsQI</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Ross, Kayleigh C</creator><creator>Andrews, Andrew J</creator><creator>Marion, Christopher D</creator><creator>Yen, Timothy J</creator><creator>Bhattacharjee, Vikram</creator><general>American Association for Cancer Research Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</title><author>Ross, Kayleigh C ; Andrews, Andrew J ; Marion, Christopher D ; Yen, Timothy J ; Bhattacharjee, Vikram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biosynthesis</topic><topic>Biosynthetic Pathways - drug effects</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Deoxycytidine - analogs &amp; derivatives</topic><topic>Deoxycytidine - pharmacology</topic><topic>Deoxycytidine - therapeutic use</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Folic acid</topic><topic>Gemcitabine</topic><topic>Humans</topic><topic>Imidazoles - pharmacology</topic><topic>Imidazoles - therapeutic use</topic><topic>Indoles - pharmacology</topic><topic>Indoles - therapeutic use</topic><topic>Inhibitors</topic><topic>Lung cancer</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - pathology</topic><topic>Melanoma</topic><topic>Melanoma - drug therapy</topic><topic>Melanoma - pathology</topic><topic>Metastases</topic><topic>Methotrexate</topic><topic>Methotrexate - pharmacology</topic><topic>Methotrexate - therapeutic use</topic><topic>Models, Biological</topic><topic>Oximes - pharmacology</topic><topic>Oximes - therapeutic use</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - drug therapy</topic><topic>Pancreatic Neoplasms - pathology</topic><topic>Phosphoglycerate Dehydrogenase - metabolism</topic><topic>Proto-Oncogene Proteins B-raf - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins B-raf - metabolism</topic><topic>Serine</topic><topic>Serine - metabolism</topic><topic>siRNA</topic><topic>Sulfonamides - pharmacology</topic><topic>Sulfonamides - therapeutic use</topic><topic>Tumor cell lines</topic><topic>Tumor cells</topic><topic>Vemurafenib</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ross, Kayleigh C</creatorcontrib><creatorcontrib>Andrews, Andrew J</creatorcontrib><creatorcontrib>Marion, Christopher D</creatorcontrib><creatorcontrib>Yen, Timothy J</creatorcontrib><creatorcontrib>Bhattacharjee, Vikram</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ross, Kayleigh C</au><au>Andrews, Andrew J</au><au>Marion, Christopher D</au><au>Yen, Timothy J</au><au>Bhattacharjee, Vikram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>16</volume><issue>8</issue><spage>1596</spage><epage>1609</epage><pages>1596-1609</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Metastatic melanoma cells commonly acquire resistance to V600E inhibitors (BRAFi). In this study, we identified serine biosynthesis as a critical mechanism of resistance. Proteomic assays revealed differential protein expression of serine biosynthetic enzymes PHGDH, PSPH, and PSAT1 following vemurafenib (BRAFi) treatment in sensitive versus acquired resistant melanoma cells. Ablation of PHGDH via siRNA sensitized acquired resistant cells to vemurafenib. Inhibiting the folate cycle, directly downstream of serine synthesis, with methotrexate also displayed similar sensitization. Using the DNA-damaging drug gemcitabine, we show that gemcitabine pretreatment sensitized resistant melanoma cells to BRAFis vemurafenib and dabrafenib. We extended our findings to BRAF WT tumor cell lines that are intrinsically resistant to vemurafenib and dabrafenib. Pretreatment of pancreatic cancer and non-small cell lung cancer cell lines with sublethal doses of 50 and 5 nmol/L of gemcitabine, respectively, enhanced killing by both vemurafenib and dabrafenib. The novel aspects of this study are the direct identification of serine biosynthesis as a critical mechanism of V600E inhibitor resistance and the first successful example of using gemcitabine + BRAFis in combination to kill previously drug-resistant cancer cells, creating the translational potential of pretreatment with gemcitabine prior to BRAFi treatment of tumor cells to reverse resistance within the mutational profile and the WT. .</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>28500236</pmid><doi>10.1158/1535-7163.MCT-16-0798</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7163
ispartof Molecular cancer therapeutics, 2017-08, Vol.16 (8), p.1596-1609
issn 1535-7163
1538-8514
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5544579
source EZB Electronic Journals Library
subjects Biosynthesis
Biosynthetic Pathways - drug effects
Biotechnology
Cancer
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - pathology
Cell Line, Tumor
Cell Proliferation - drug effects
Deoxycytidine - analogs & derivatives
Deoxycytidine - pharmacology
Deoxycytidine - therapeutic use
Deoxyribonucleic acid
DNA
DNA damage
Drug resistance
Drug Resistance, Neoplasm - drug effects
Folic acid
Gemcitabine
Humans
Imidazoles - pharmacology
Imidazoles - therapeutic use
Indoles - pharmacology
Indoles - therapeutic use
Inhibitors
Lung cancer
Lung Neoplasms - drug therapy
Lung Neoplasms - pathology
Melanoma
Melanoma - drug therapy
Melanoma - pathology
Metastases
Methotrexate
Methotrexate - pharmacology
Methotrexate - therapeutic use
Models, Biological
Oximes - pharmacology
Oximes - therapeutic use
Pancreatic cancer
Pancreatic Neoplasms - drug therapy
Pancreatic Neoplasms - pathology
Phosphoglycerate Dehydrogenase - metabolism
Proto-Oncogene Proteins B-raf - antagonists & inhibitors
Proto-Oncogene Proteins B-raf - metabolism
Serine
Serine - metabolism
siRNA
Sulfonamides - pharmacology
Sulfonamides - therapeutic use
Tumor cell lines
Tumor cells
Vemurafenib
title Identification of the Serine Biosynthesis Pathway as a Critical Component of BRAF Inhibitor Resistance of Melanoma, Pancreatic, and Non-Small Cell Lung Cancer Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A33%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20the%20Serine%20Biosynthesis%20Pathway%20as%20a%20Critical%20Component%20of%20BRAF%20Inhibitor%20Resistance%20of%20Melanoma,%20Pancreatic,%20and%20Non-Small%20Cell%20Lung%20Cancer%20Cells&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Ross,%20Kayleigh%20C&rft.date=2017-08-01&rft.volume=16&rft.issue=8&rft.spage=1596&rft.epage=1609&rft.pages=1596-1609&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-16-0798&rft_dat=%3Cproquest_pubme%3E1899117302%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c491t-9a7cefeed69553567d2cdc2ba130c5e2efbd2553201d6612e6c4f16fa9aa6f773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1984081327&rft_id=info:pmid/28500236&rfr_iscdi=true