Loading…

VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia

Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-spe...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (31), p.8271-8276
Main Authors: Zhu, Juan-Juan, Liu, Yue-Feng, Zhang, Yun-Peng, Zhao, Chuan-Rong, Yao, Wei-Juan, Li, Yi-Shuan, Wang, Kuei-Chun, Huang, Tse-Shun, Pang, Wei, Wang, Xi-Fu, Wang, Xian, Chien, Shu, Zhou, Jing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453
cites cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453
container_end_page 8276
container_issue 31
container_start_page 8271
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Zhu, Juan-Juan
Liu, Yue-Feng
Zhang, Yun-Peng
Zhao, Chuan-Rong
Yao, Wei-Juan
Li, Yi-Shuan
Wang, Kuei-Chun
Huang, Tse-Shun
Pang, Wei
Wang, Xi-Fu
Wang, Xian
Chien, Shu
Zhou, Jing
description Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.
doi_str_mv 10.1073/pnas.1700561114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487203</jstor_id><sourcerecordid>26487203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtMAAM2xMXhq_klobv7aEgft8vDAwhRlN_3t5vtqqKwLnd0_u4SD0lJITSrr2dIqmnNCOECEppfweWlGiaCO5IvfRihDWNT1n_Ag9KmVHCFGiJw_REes7KhUjKzR9W3-4bLGJDn--WF-yFo_gvJkBz1vAzpd5yQM4vAnpZ-OjW2y9QHSpysGbgEdvc_p0scYFbIbZp_jbrIypInhcig2At9cT5CmY4s1j9GBjQoEnN-cx-vrm9Zezd835x7fvz9bnjeW8nRsprB16JWCQPQjFrDUbp_r6yJwdFLWtINwJ6zrBOgHMOEIMB8XqUK-4aI_Rq4PvtAw1koU4ZxP0lP1o8rVOxut_lei3-nv6oYXgnVBdNXh5Y5DT1QJl1qMvFkIwEdJSNFWM0lZS1Vf0xX_oLi051niV4pLvKVmp0wNVP6yUDJvbZSjR-zb1vk1912adeP53hlv-T30VeHYAdmVO-U6XvO-q3P4CGDymcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946436196</pqid></control><display><type>article</type><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</creator><creatorcontrib>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</creatorcontrib><description>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1700561114</identifier><identifier>PMID: 28716920</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Biological Sciences ; Blood flow ; Endocytosis ; Endothelial cells ; Endothelium ; Genotype &amp; phenotype ; Hyperplasia ; Inhibition ; Membrane proteins ; MicroRNAs ; miRNA ; Muscle contraction ; Muscular system ; Pharmacology ; Proteins ; Rapamycin ; Ribonucleic acid ; RNA ; Secretion ; Shear ; Signal transduction ; Smooth muscle ; SNAP receptors ; TOR protein ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.8271-8276</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</citedby><cites>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28716920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Wang, Kuei-Chun</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Wang, Xi-Fu</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</description><subject>Activation</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Endocytosis</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Genotype &amp; phenotype</subject><subject>Hyperplasia</subject><subject>Inhibition</subject><subject>Membrane proteins</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Muscle contraction</subject><subject>Muscular system</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Secretion</subject><subject>Shear</subject><subject>Signal transduction</subject><subject>Smooth muscle</subject><subject>SNAP receptors</subject><subject>TOR protein</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtMAAM2xMXhq_klobv7aEgft8vDAwhRlN_3t5vtqqKwLnd0_u4SD0lJITSrr2dIqmnNCOECEppfweWlGiaCO5IvfRihDWNT1n_Ag9KmVHCFGiJw_REes7KhUjKzR9W3-4bLGJDn--WF-yFo_gvJkBz1vAzpd5yQM4vAnpZ-OjW2y9QHSpysGbgEdvc_p0scYFbIbZp_jbrIypInhcig2At9cT5CmY4s1j9GBjQoEnN-cx-vrm9Zezd835x7fvz9bnjeW8nRsprB16JWCQPQjFrDUbp_r6yJwdFLWtINwJ6zrBOgHMOEIMB8XqUK-4aI_Rq4PvtAw1koU4ZxP0lP1o8rVOxut_lei3-nv6oYXgnVBdNXh5Y5DT1QJl1qMvFkIwEdJSNFWM0lZS1Vf0xX_oLi051niV4pLvKVmp0wNVP6yUDJvbZSjR-zb1vk1912adeP53hlv-T30VeHYAdmVO-U6XvO-q3P4CGDymcQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhu, Juan-Juan</creator><creator>Liu, Yue-Feng</creator><creator>Zhang, Yun-Peng</creator><creator>Zhao, Chuan-Rong</creator><creator>Yao, Wei-Juan</creator><creator>Li, Yi-Shuan</creator><creator>Wang, Kuei-Chun</creator><creator>Huang, Tse-Shun</creator><creator>Pang, Wei</creator><creator>Wang, Xi-Fu</creator><creator>Wang, Xian</creator><creator>Chien, Shu</creator><creator>Zhou, Jing</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><author>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Endocytosis</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Genotype &amp; phenotype</topic><topic>Hyperplasia</topic><topic>Inhibition</topic><topic>Membrane proteins</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Muscle contraction</topic><topic>Muscular system</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Secretion</topic><topic>Shear</topic><topic>Signal transduction</topic><topic>Smooth muscle</topic><topic>SNAP receptors</topic><topic>TOR protein</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Wang, Kuei-Chun</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Wang, Xi-Fu</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Juan-Juan</au><au>Liu, Yue-Feng</au><au>Zhang, Yun-Peng</au><au>Zhao, Chuan-Rong</au><au>Yao, Wei-Juan</au><au>Li, Yi-Shuan</au><au>Wang, Kuei-Chun</au><au>Huang, Tse-Shun</au><au>Pang, Wei</au><au>Wang, Xi-Fu</au><au>Wang, Xian</au><au>Chien, Shu</au><au>Zhou, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>114</volume><issue>31</issue><spage>8271</spage><epage>8276</epage><pages>8271-8276</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28716920</pmid><doi>10.1073/pnas.1700561114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.8271-8276
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547597
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Activation
Biological Sciences
Blood flow
Endocytosis
Endothelial cells
Endothelium
Genotype & phenotype
Hyperplasia
Inhibition
Membrane proteins
MicroRNAs
miRNA
Muscle contraction
Muscular system
Pharmacology
Proteins
Rapamycin
Ribonucleic acid
RNA
Secretion
Shear
Signal transduction
Smooth muscle
SNAP receptors
TOR protein
Transcription
title VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VAMP3%20and%20SNAP23%20mediate%20the%20disturbed%20flow-induced%20endothelial%20microRNA%20secretion%20and%20smooth%20muscle%20hyperplasia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhu,%20Juan-Juan&rft.date=2017-08-01&rft.volume=114&rft.issue=31&rft.spage=8271&rft.epage=8276&rft.pages=8271-8276&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1700561114&rft_dat=%3Cjstor_pubme%3E26487203%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946436196&rft_id=info:pmid/28716920&rft_jstor_id=26487203&rfr_iscdi=true