Loading…
VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia
Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-spe...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (31), p.8271-8276 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453 |
container_end_page | 8276 |
container_issue | 31 |
container_start_page | 8271 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 114 |
creator | Zhu, Juan-Juan Liu, Yue-Feng Zhang, Yun-Peng Zhao, Chuan-Rong Yao, Wei-Juan Li, Yi-Shuan Wang, Kuei-Chun Huang, Tse-Shun Pang, Wei Wang, Xi-Fu Wang, Xian Chien, Shu Zhou, Jing |
description | Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication. |
doi_str_mv | 10.1073/pnas.1700561114 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487203</jstor_id><sourcerecordid>26487203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</originalsourceid><addsrcrecordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtMAAM2xMXhq_klobv7aEgft8vDAwhRlN_3t5vtqqKwLnd0_u4SD0lJITSrr2dIqmnNCOECEppfweWlGiaCO5IvfRihDWNT1n_Ag9KmVHCFGiJw_REes7KhUjKzR9W3-4bLGJDn--WF-yFo_gvJkBz1vAzpd5yQM4vAnpZ-OjW2y9QHSpysGbgEdvc_p0scYFbIbZp_jbrIypInhcig2At9cT5CmY4s1j9GBjQoEnN-cx-vrm9Zezd835x7fvz9bnjeW8nRsprB16JWCQPQjFrDUbp_r6yJwdFLWtINwJ6zrBOgHMOEIMB8XqUK-4aI_Rq4PvtAw1koU4ZxP0lP1o8rVOxut_lei3-nv6oYXgnVBdNXh5Y5DT1QJl1qMvFkIwEdJSNFWM0lZS1Vf0xX_oLi051niV4pLvKVmp0wNVP6yUDJvbZSjR-zb1vk1912adeP53hlv-T30VeHYAdmVO-U6XvO-q3P4CGDymcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946436196</pqid></control><display><type>article</type><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</creator><creatorcontrib>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</creatorcontrib><description>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1700561114</identifier><identifier>PMID: 28716920</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Activation ; Biological Sciences ; Blood flow ; Endocytosis ; Endothelial cells ; Endothelium ; Genotype & phenotype ; Hyperplasia ; Inhibition ; Membrane proteins ; MicroRNAs ; miRNA ; Muscle contraction ; Muscular system ; Pharmacology ; Proteins ; Rapamycin ; Ribonucleic acid ; RNA ; Secretion ; Shear ; Signal transduction ; Smooth muscle ; SNAP receptors ; TOR protein ; Transcription</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.8271-8276</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</citedby><cites>FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487203$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487203$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771,58216,58449</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28716920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Wang, Kuei-Chun</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Wang, Xi-Fu</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</description><subject>Activation</subject><subject>Biological Sciences</subject><subject>Blood flow</subject><subject>Endocytosis</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Genotype & phenotype</subject><subject>Hyperplasia</subject><subject>Inhibition</subject><subject>Membrane proteins</subject><subject>MicroRNAs</subject><subject>miRNA</subject><subject>Muscle contraction</subject><subject>Muscular system</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Rapamycin</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Secretion</subject><subject>Shear</subject><subject>Signal transduction</subject><subject>Smooth muscle</subject><subject>SNAP receptors</subject><subject>TOR protein</subject><subject>Transcription</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFSEUxYnR2Gd17UpD4sbNtMAAM2xMXhq_klobv7aEgft8vDAwhRlN_3t5vtqqKwLnd0_u4SD0lJITSrr2dIqmnNCOECEppfweWlGiaCO5IvfRihDWNT1n_Ag9KmVHCFGiJw_REes7KhUjKzR9W3-4bLGJDn--WF-yFo_gvJkBz1vAzpd5yQM4vAnpZ-OjW2y9QHSpysGbgEdvc_p0scYFbIbZp_jbrIypInhcig2At9cT5CmY4s1j9GBjQoEnN-cx-vrm9Zezd835x7fvz9bnjeW8nRsprB16JWCQPQjFrDUbp_r6yJwdFLWtINwJ6zrBOgHMOEIMB8XqUK-4aI_Rq4PvtAw1koU4ZxP0lP1o8rVOxut_lei3-nv6oYXgnVBdNXh5Y5DT1QJl1qMvFkIwEdJSNFWM0lZS1Vf0xX_oLi051niV4pLvKVmp0wNVP6yUDJvbZSjR-zb1vk1912adeP53hlv-T30VeHYAdmVO-U6XvO-q3P4CGDymcQ</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Zhu, Juan-Juan</creator><creator>Liu, Yue-Feng</creator><creator>Zhang, Yun-Peng</creator><creator>Zhao, Chuan-Rong</creator><creator>Yao, Wei-Juan</creator><creator>Li, Yi-Shuan</creator><creator>Wang, Kuei-Chun</creator><creator>Huang, Tse-Shun</creator><creator>Pang, Wei</creator><creator>Wang, Xi-Fu</creator><creator>Wang, Xian</creator><creator>Chien, Shu</creator><creator>Zhou, Jing</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</title><author>Zhu, Juan-Juan ; Liu, Yue-Feng ; Zhang, Yun-Peng ; Zhao, Chuan-Rong ; Yao, Wei-Juan ; Li, Yi-Shuan ; Wang, Kuei-Chun ; Huang, Tse-Shun ; Pang, Wei ; Wang, Xi-Fu ; Wang, Xian ; Chien, Shu ; Zhou, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Biological Sciences</topic><topic>Blood flow</topic><topic>Endocytosis</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Genotype & phenotype</topic><topic>Hyperplasia</topic><topic>Inhibition</topic><topic>Membrane proteins</topic><topic>MicroRNAs</topic><topic>miRNA</topic><topic>Muscle contraction</topic><topic>Muscular system</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Rapamycin</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Secretion</topic><topic>Shear</topic><topic>Signal transduction</topic><topic>Smooth muscle</topic><topic>SNAP receptors</topic><topic>TOR protein</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Juan-Juan</creatorcontrib><creatorcontrib>Liu, Yue-Feng</creatorcontrib><creatorcontrib>Zhang, Yun-Peng</creatorcontrib><creatorcontrib>Zhao, Chuan-Rong</creatorcontrib><creatorcontrib>Yao, Wei-Juan</creatorcontrib><creatorcontrib>Li, Yi-Shuan</creatorcontrib><creatorcontrib>Wang, Kuei-Chun</creatorcontrib><creatorcontrib>Huang, Tse-Shun</creatorcontrib><creatorcontrib>Pang, Wei</creatorcontrib><creatorcontrib>Wang, Xi-Fu</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Juan-Juan</au><au>Liu, Yue-Feng</au><au>Zhang, Yun-Peng</au><au>Zhao, Chuan-Rong</au><au>Yao, Wei-Juan</au><au>Li, Yi-Shuan</au><au>Wang, Kuei-Chun</au><au>Huang, Tse-Shun</au><au>Pang, Wei</au><au>Wang, Xi-Fu</au><au>Wang, Xian</au><au>Chien, Shu</au><au>Zhou, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>114</volume><issue>31</issue><spage>8271</spage><epage>8276</epage><pages>8271-8276</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Vascular endothelial cells (ECs) at arterial branches and curvatures experience disturbed blood flow and induce a quiescent-to-activated phenotypic transition of the adjacent smooth muscle cells (SMCs) and a subsequent smooth muscle hyperplasia. However, the mechanism underlying the flow pattern-specific initiation of EC-to-SMC signaling remains elusive. Our previous study demonstrated that endothelial microRNA-126-3p (miR-126-3p) acts as a key intercellular molecule to increase turnover of the recipient SMCs, and that its release is reduced by atheroprotective laminar shear (12 dynes/cm²) to ECs. Here we provide evidence that atherogenic oscillatory shear (0.5 ± 4 dynes/cm²), but not atheroprotective pulsatile shear (12 ± 4 dynes/cm²), increases the endothelial secretion of nonmembrane-bound miR-126-3p and other microRNAs (miRNAs) via the activation of SNAREs, vesicle-associated membrane protein 3 (VAMP3) and synaptosomal-associated protein 23 (SNAP23). Knockdown of VAMP3 and SNAP23 reduces endothelial secretion of miR-126-3p and miR-200a-3p, as well as the proliferation, migration, and suppression of contractile markers in SMCs caused by EC-coculture. Pharmacological intervention of mammalian target of rapamycin complex 1 in ECs blocks endothelial secretion and EC-to-SMC transfer ofmiR-126-3p through transcriptional inhibition of VAMP3 and SNAP23. Systemic inhibition of VAMP3 and SNAP23 by rapamycin or periadventitial application of the endocytosis inhibitor dynasore ameliorates the disturbed flow-induced neointimal formation, whereas intraluminal overexpression of SNAP23 aggravates it. Our findings demonstrate the flow-pattern–specificity of SNARE activation and its contribution to the miRNA-mediated EC–SMC communication.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28716920</pmid><doi>10.1073/pnas.1700561114</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.8271-8276 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547597 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Activation Biological Sciences Blood flow Endocytosis Endothelial cells Endothelium Genotype & phenotype Hyperplasia Inhibition Membrane proteins MicroRNAs miRNA Muscle contraction Muscular system Pharmacology Proteins Rapamycin Ribonucleic acid RNA Secretion Shear Signal transduction Smooth muscle SNAP receptors TOR protein Transcription |
title | VAMP3 and SNAP23 mediate the disturbed flow-induced endothelial microRNA secretion and smooth muscle hyperplasia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A51%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VAMP3%20and%20SNAP23%20mediate%20the%20disturbed%20flow-induced%20endothelial%20microRNA%20secretion%20and%20smooth%20muscle%20hyperplasia&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zhu,%20Juan-Juan&rft.date=2017-08-01&rft.volume=114&rft.issue=31&rft.spage=8271&rft.epage=8276&rft.pages=8271-8276&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1700561114&rft_dat=%3Cjstor_pubme%3E26487203%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-65ccb895eb68e592ccafd98ccb2dcb91c3504d5cd75275e2ad00a4e92b8989453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946436196&rft_id=info:pmid/28716920&rft_jstor_id=26487203&rfr_iscdi=true |