Loading…

The case for defined protein folding pathways

We consider the differences between the many-pathway protein folding model derived from theoretical energy landscape considerations and the defined-pathway model derived from experiment. A basic tenet of the energy landscape model is that proteins fold through many heterogeneous pathways by way of a...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (31), p.8253-8258
Main Authors: Englander, S. Walter, Mayne, Leland
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the differences between the many-pathway protein folding model derived from theoretical energy landscape considerations and the defined-pathway model derived from experiment. A basic tenet of the energy landscape model is that proteins fold through many heterogeneous pathways by way of amino acid-level dynamics biased toward selecting native-like interactions. The many pathways imagined in the model are not observed in the structure-formation stage of folding by experiments that would have found them, but they have now been detected and characterized for one protein in the initial prenucleation stage. Analysis presented here shows that these many microscopic trajectories are not distinct in any functionally significant way, and they have neither the structural information nor the biased energetics needed to select native vs. nonnative interactions during folding. The opposed defined-pathway model stems from experimental results that show that proteins are assemblies of small cooperative units called foldons and that a number of proteins fold in a reproducible pathway one foldon unit at a time. Thus, the same foldon interactions that encode the native structure of any given protein also naturally encode its particular foldon-based folding pathway, and they collectively sum to produce the energy bias toward native interactions that is necessary for efficient folding. Available information suggests that quantized native structure and stepwise folding coevolved in ancient repeat proteins and were retained as a functional pair due to their utility for solving the difficult protein folding problem.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1706196114