Loading…

Symmetry-related proton transfer pathways in respiratory complex I

Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despi...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (31), p.E6314-E6321
Main Authors: Di Luca, Andrea, Gamiz-Hernandez, Ana P., Kaila, Ville R. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3
cites cdi_FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3
container_end_page E6321
container_issue 31
container_start_page E6314
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Di Luca, Andrea
Gamiz-Hernandez, Ana P.
Kaila, Ville R. I.
description Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus. The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.
doi_str_mv 10.1073/pnas.1706278114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487238</jstor_id><sourcerecordid>26487238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3</originalsourceid><addsrcrecordid>eNpdkUtLxDAURoMoOj7WrpSCGzfVm0fz2Ag6-ALBhboOmTbRDm1Tk47af29kfK8SuCcf5-ZDaBfDEQZBj_vOxCMsgBMhMWYraIJB4ZwzBatoAkBELhlhG2gzxjkAqELCOtogUmCuSDFBZ3dj29ohjHmwjRlslfXBD77LhmC66GzIejM8vZoxZnWXBRv7OpjBhzErfds39i273kZrzjTR7nyeW-jh4vx-epXf3F5eT09v8rIANeSYVhwkd6ZUlVIEW-akST7EFNw5gSUlJWdY2RnMGK0co2CYSFcxM5wVjm6hk2Vuv5i1tiptlxwb3Ye6NWHU3tT676Srn_Sjf9FFwQRnkAIOPwOCf17YOOi2jqVtGtNZv4gaJytMmaIioQf_0LlfhC6tlyiWdIggOFHHS6oMPsZg3bcMBv3Rj_7oR__0k17s_97hm_8qJAF7S2Ae0y__zDmTglBJ3wF4_JZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946452721</pqid></control><display><type>article</type><title>Symmetry-related proton transfer pathways in respiratory complex I</title><source>PubMed Central Free</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Di Luca, Andrea ; Gamiz-Hernandez, Ana P. ; Kaila, Ville R. I.</creator><creatorcontrib>Di Luca, Andrea ; Gamiz-Hernandez, Ana P. ; Kaila, Ville R. I.</creatorcontrib><description>Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus. The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1706278114</identifier><identifier>PMID: 28716925</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Channels ; Chemical synthesis ; Coupling (molecular) ; Electron transfer ; Electron transport chain ; Energy ; Gram-negative bacteria ; Molecules ; PNAS Plus ; Protonation ; Protons ; Quinones ; Simulation ; Site-directed mutagenesis ; Symmetry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.E6314-E6321</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3</citedby><cites>FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487238$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487238$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28716925$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Luca, Andrea</creatorcontrib><creatorcontrib>Gamiz-Hernandez, Ana P.</creatorcontrib><creatorcontrib>Kaila, Ville R. I.</creatorcontrib><title>Symmetry-related proton transfer pathways in respiratory complex I</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus. The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.</description><subject>Biological Sciences</subject><subject>Channels</subject><subject>Chemical synthesis</subject><subject>Coupling (molecular)</subject><subject>Electron transfer</subject><subject>Electron transport chain</subject><subject>Energy</subject><subject>Gram-negative bacteria</subject><subject>Molecules</subject><subject>PNAS Plus</subject><subject>Protonation</subject><subject>Protons</subject><subject>Quinones</subject><subject>Simulation</subject><subject>Site-directed mutagenesis</subject><subject>Symmetry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkUtLxDAURoMoOj7WrpSCGzfVm0fz2Ag6-ALBhboOmTbRDm1Tk47af29kfK8SuCcf5-ZDaBfDEQZBj_vOxCMsgBMhMWYraIJB4ZwzBatoAkBELhlhG2gzxjkAqELCOtogUmCuSDFBZ3dj29ohjHmwjRlslfXBD77LhmC66GzIejM8vZoxZnWXBRv7OpjBhzErfds39i273kZrzjTR7nyeW-jh4vx-epXf3F5eT09v8rIANeSYVhwkd6ZUlVIEW-akST7EFNw5gSUlJWdY2RnMGK0co2CYSFcxM5wVjm6hk2Vuv5i1tiptlxwb3Ye6NWHU3tT676Srn_Sjf9FFwQRnkAIOPwOCf17YOOi2jqVtGtNZv4gaJytMmaIioQf_0LlfhC6tlyiWdIggOFHHS6oMPsZg3bcMBv3Rj_7oR__0k17s_97hm_8qJAF7S2Ae0y__zDmTglBJ3wF4_JZU</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Di Luca, Andrea</creator><creator>Gamiz-Hernandez, Ana P.</creator><creator>Kaila, Ville R. I.</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170801</creationdate><title>Symmetry-related proton transfer pathways in respiratory complex I</title><author>Di Luca, Andrea ; Gamiz-Hernandez, Ana P. ; Kaila, Ville R. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biological Sciences</topic><topic>Channels</topic><topic>Chemical synthesis</topic><topic>Coupling (molecular)</topic><topic>Electron transfer</topic><topic>Electron transport chain</topic><topic>Energy</topic><topic>Gram-negative bacteria</topic><topic>Molecules</topic><topic>PNAS Plus</topic><topic>Protonation</topic><topic>Protons</topic><topic>Quinones</topic><topic>Simulation</topic><topic>Site-directed mutagenesis</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Luca, Andrea</creatorcontrib><creatorcontrib>Gamiz-Hernandez, Ana P.</creatorcontrib><creatorcontrib>Kaila, Ville R. I.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Luca, Andrea</au><au>Gamiz-Hernandez, Ana P.</au><au>Kaila, Ville R. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry-related proton transfer pathways in respiratory complex I</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-08-01</date><risdate>2017</risdate><volume>114</volume><issue>31</issue><spage>E6314</spage><epage>E6321</epage><pages>E6314-E6321</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Complex I functions as the initial electron acceptor in aerobic respiratory chains of most organisms. This gigantic redox-driven enzyme employs the energy from quinone reduction to pump protons across its complete approximately 200-Å membrane domain, thermodynamically driving synthesis of ATP. Despite recently resolved structures from several species, the molecular mechanism by which complex I catalyzes this long-range proton-coupled electron transfer process, however, still remains unclear. We perform here large-scale classical and quantum molecular simulations to study the function of the proton pump in complex I from Thermus thermophilus. The simulations suggest that proton channels are established at symmetry-related locations in four subunits of the membrane domain. The channels open up by formation of quasi one-dimensional water chains that are sensitive to the protonation states of buried residues at structurally conserved broken helix elements. Our combined data provide mechanistic insight into long-range coupling effects and predictions for site-directed mutagenesis experiments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28716925</pmid><doi>10.1073/pnas.1706278114</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (31), p.E6314-E6321
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5547640
source PubMed Central Free; JSTOR Archival Journals and Primary Sources Collection
subjects Biological Sciences
Channels
Chemical synthesis
Coupling (molecular)
Electron transfer
Electron transport chain
Energy
Gram-negative bacteria
Molecules
PNAS Plus
Protonation
Protons
Quinones
Simulation
Site-directed mutagenesis
Symmetry
title Symmetry-related proton transfer pathways in respiratory complex I
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A19%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry-related%20proton%20transfer%20pathways%20in%20respiratory%20complex%20I&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Di%20Luca,%20Andrea&rft.date=2017-08-01&rft.volume=114&rft.issue=31&rft.spage=E6314&rft.epage=E6321&rft.pages=E6314-E6321&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1706278114&rft_dat=%3Cjstor_pubme%3E26487238%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-13d6086fac9d9921e4f8a9582a56ff71832c6419eb0b43df430a47b437ba645f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946452721&rft_id=info:pmid/28716925&rft_jstor_id=26487238&rfr_iscdi=true