Loading…
Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA
The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZar...
Saved in:
Published in: | International journal of environmental research and public health 2017-06, Vol.14 (7), p.705 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The size and complexity of industrial chemical plants, together with the nature of the products handled, means that an analysis and control of the risks involved is required. This paper presents a methodology for risk analysis in chemical and allied industries that is based on a combination of HAZard and OPerability analysis (HAZOP) and a quantitative analysis of the most relevant risks through the development of fault trees, fault tree analysis (FTA). Results from FTA allow prioritizing the preventive and corrective measures to minimize the probability of failure. An analysis of a case study is performed; it consists in the terminal for unloading chemical and petroleum products, and the fuel storage facilities of two companies, in the port of Valencia (Spain). HAZOP analysis shows that loading and unloading areas are the most sensitive areas of the plant and where the most significant danger is a fuel spill. FTA analysis indicates that the most likely event is a fuel spill in tank truck loading area. A sensitivity analysis from the FTA results show the importance of the human factor in all sequences of the possible accidents, so it should be mandatory to improve the training of the staff of the plants. |
---|---|
ISSN: | 1660-4601 1661-7827 1660-4601 |
DOI: | 10.3390/ijerph14070705 |