Loading…

CRISPR-Cas12a-Assisted Recombineering in Bacteria

Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point...

Full description

Saved in:
Bibliographic Details
Published in:Applied and environmental microbiology 2017-09, Vol.83 (17)
Main Authors: Yan, Mei-Yi, Yan, Hai-Qin, Ren, Gai-Xian, Zhao, Ju-Ping, Guo, Xiao-Peng, Sun, Yi-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43
cites cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43
container_end_page
container_issue 17
container_start_page
container_title Applied and environmental microbiology
container_volume 83
creator Yan, Mei-Yi
Yan, Hai-Qin
Ren, Gai-Xian
Zhao, Ju-Ping
Guo, Xiao-Peng
Sun, Yi-Cheng
description Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in , , and Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria. The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.
doi_str_mv 10.1128/aem.00947-17
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957170177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRbK3ePEvBiwdTd3aT3eQi1FC1UFGqnpfNZlJT8lGzieC_d2trUZnDMDPPvMwHIadARwAsvNJYjiiNfOmB3CN9oFHoBZyLfdJ36chjzKc9cmTtklLqUxEekh4LhS9cd59APJ8-P829WFtg2htbm9sW0-EcTV0meYXY5NVimFfDG21aF-hjcpDpwuLJ1g_I6-3kJb73Zo9303g880zAoPVSzkwUMjSYMKQMklQYwRECk7DEcN8HgYyhRJ1lUhjMTKRByzSgwpn2-YBcb3RXXVJiarBqG12oVZOXuvlUtc7V30qVv6lF_aGCQLi7rAUutgJN_d6hbVWZW4NFoSusO6sgAs6jMJCRQ8__ocu6ayq3nqMCCZKClI663FCmqa1tMNsNA1Stf6HGkwf1_QsFa_zs9wI7-Of4_AtuMoNn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957170177</pqid></control><display><type>article</type><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><source>American Society for Microbiology</source><source>PubMed Central(OpenAccess)</source><creator>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng</creator><contributor>Müller, Volker</contributor><creatorcontrib>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng ; Müller, Volker</creatorcontrib><description>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in , , and Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria. The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.00947-17</identifier><identifier>PMID: 28646112</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Antibiotic resistance ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; CRISPR-Cas Systems ; E coli ; Endonucleases - genetics ; Endonucleases - metabolism ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic Engineering ; Genetics ; Genome editing ; Genomes ; Genomics ; Methods ; Mutation ; Mycobacterium smegmatis - enzymology ; Mycobacterium smegmatis - genetics ; Mycobacterium smegmatis - metabolism ; Plasmids ; Plasmids - genetics ; Plasmids - metabolism ; Recombinants ; Recombination, Genetic ; Yersinia pestis - enzymology ; Yersinia pestis - genetics ; Yersinia pestis - metabolism</subject><ispartof>Applied and environmental microbiology, 2017-09, Vol.83 (17)</ispartof><rights>Copyright © 2017 Yan et al.</rights><rights>Copyright American Society for Microbiology Sep 2017</rights><rights>Copyright © 2017 Yan et al. 2017 Yan et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</citedby><cites>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28646112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Müller, Volker</contributor><creatorcontrib>Yan, Mei-Yi</creatorcontrib><creatorcontrib>Yan, Hai-Qin</creatorcontrib><creatorcontrib>Ren, Gai-Xian</creatorcontrib><creatorcontrib>Zhao, Ju-Ping</creatorcontrib><creatorcontrib>Guo, Xiao-Peng</creatorcontrib><creatorcontrib>Sun, Yi-Cheng</creatorcontrib><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in , , and Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria. The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>E coli</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic Engineering</subject><subject>Genetics</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Methods</subject><subject>Mutation</subject><subject>Mycobacterium smegmatis - enzymology</subject><subject>Mycobacterium smegmatis - genetics</subject><subject>Mycobacterium smegmatis - metabolism</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Recombinants</subject><subject>Recombination, Genetic</subject><subject>Yersinia pestis - enzymology</subject><subject>Yersinia pestis - genetics</subject><subject>Yersinia pestis - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRbK3ePEvBiwdTd3aT3eQi1FC1UFGqnpfNZlJT8lGzieC_d2trUZnDMDPPvMwHIadARwAsvNJYjiiNfOmB3CN9oFHoBZyLfdJ36chjzKc9cmTtklLqUxEekh4LhS9cd59APJ8-P829WFtg2htbm9sW0-EcTV0meYXY5NVimFfDG21aF-hjcpDpwuLJ1g_I6-3kJb73Zo9303g880zAoPVSzkwUMjSYMKQMklQYwRECk7DEcN8HgYyhRJ1lUhjMTKRByzSgwpn2-YBcb3RXXVJiarBqG12oVZOXuvlUtc7V30qVv6lF_aGCQLi7rAUutgJN_d6hbVWZW4NFoSusO6sgAs6jMJCRQ8__ocu6ayq3nqMCCZKClI663FCmqa1tMNsNA1Stf6HGkwf1_QsFa_zs9wI7-Of4_AtuMoNn</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yan, Mei-Yi</creator><creator>Yan, Hai-Qin</creator><creator>Ren, Gai-Xian</creator><creator>Zhao, Ju-Ping</creator><creator>Guo, Xiao-Peng</creator><creator>Sun, Yi-Cheng</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><author>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>E coli</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic Engineering</topic><topic>Genetics</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Methods</topic><topic>Mutation</topic><topic>Mycobacterium smegmatis - enzymology</topic><topic>Mycobacterium smegmatis - genetics</topic><topic>Mycobacterium smegmatis - metabolism</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Recombinants</topic><topic>Recombination, Genetic</topic><topic>Yersinia pestis - enzymology</topic><topic>Yersinia pestis - genetics</topic><topic>Yersinia pestis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Mei-Yi</creatorcontrib><creatorcontrib>Yan, Hai-Qin</creatorcontrib><creatorcontrib>Ren, Gai-Xian</creatorcontrib><creatorcontrib>Zhao, Ju-Ping</creatorcontrib><creatorcontrib>Guo, Xiao-Peng</creatorcontrib><creatorcontrib>Sun, Yi-Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Mei-Yi</au><au>Yan, Hai-Qin</au><au>Ren, Gai-Xian</au><au>Zhao, Ju-Ping</au><au>Guo, Xiao-Peng</au><au>Sun, Yi-Cheng</au><au>Müller, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas12a-Assisted Recombineering in Bacteria</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>83</volume><issue>17</issue><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in , , and Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria. The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>28646112</pmid><doi>10.1128/aem.00947-17</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2017-09, Vol.83 (17)
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561284
source American Society for Microbiology; PubMed Central(OpenAccess)
subjects Antibiotic resistance
Antibiotics
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR
CRISPR-Cas Systems
E coli
Endonucleases - genetics
Endonucleases - metabolism
Escherichia coli - enzymology
Escherichia coli - genetics
Escherichia coli - metabolism
Genetic Engineering
Genetics
Genome editing
Genomes
Genomics
Methods
Mutation
Mycobacterium smegmatis - enzymology
Mycobacterium smegmatis - genetics
Mycobacterium smegmatis - metabolism
Plasmids
Plasmids - genetics
Plasmids - metabolism
Recombinants
Recombination, Genetic
Yersinia pestis - enzymology
Yersinia pestis - genetics
Yersinia pestis - metabolism
title CRISPR-Cas12a-Assisted Recombineering in Bacteria
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas12a-Assisted%20Recombineering%20in%20Bacteria&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Yan,%20Mei-Yi&rft.date=2017-09-01&rft.volume=83&rft.issue=17&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.00947-17&rft_dat=%3Cproquest_pubme%3E1957170177%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957170177&rft_id=info:pmid/28646112&rfr_iscdi=true