Loading…
CRISPR-Cas12a-Assisted Recombineering in Bacteria
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point...
Saved in:
Published in: | Applied and environmental microbiology 2017-09, Vol.83 (17) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43 |
---|---|
cites | cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43 |
container_end_page | |
container_issue | 17 |
container_start_page | |
container_title | Applied and environmental microbiology |
container_volume | 83 |
creator | Yan, Mei-Yi Yan, Hai-Qin Ren, Gai-Xian Zhao, Ju-Ping Guo, Xiao-Peng Sun, Yi-Cheng |
description | Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in
,
, and
Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.
The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria. |
doi_str_mv | 10.1128/aem.00947-17 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957170177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdRbK3ePEvBiwdTd3aT3eQi1FC1UFGqnpfNZlJT8lGzieC_d2trUZnDMDPPvMwHIadARwAsvNJYjiiNfOmB3CN9oFHoBZyLfdJ36chjzKc9cmTtklLqUxEekh4LhS9cd59APJ8-P829WFtg2htbm9sW0-EcTV0meYXY5NVimFfDG21aF-hjcpDpwuLJ1g_I6-3kJb73Zo9303g880zAoPVSzkwUMjSYMKQMklQYwRECk7DEcN8HgYyhRJ1lUhjMTKRByzSgwpn2-YBcb3RXXVJiarBqG12oVZOXuvlUtc7V30qVv6lF_aGCQLi7rAUutgJN_d6hbVWZW4NFoSusO6sgAs6jMJCRQ8__ocu6ayq3nqMCCZKClI663FCmqa1tMNsNA1Stf6HGkwf1_QsFa_zs9wI7-Of4_AtuMoNn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957170177</pqid></control><display><type>article</type><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><source>American Society for Microbiology</source><source>PubMed Central(OpenAccess)</source><creator>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng</creator><contributor>Müller, Volker</contributor><creatorcontrib>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng ; Müller, Volker</creatorcontrib><description>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in
,
, and
Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.
The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.00947-17</identifier><identifier>PMID: 28646112</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Antibiotic resistance ; Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Clustered Regularly Interspaced Short Palindromic Repeats ; CRISPR ; CRISPR-Cas Systems ; E coli ; Endonucleases - genetics ; Endonucleases - metabolism ; Escherichia coli - enzymology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic Engineering ; Genetics ; Genome editing ; Genomes ; Genomics ; Methods ; Mutation ; Mycobacterium smegmatis - enzymology ; Mycobacterium smegmatis - genetics ; Mycobacterium smegmatis - metabolism ; Plasmids ; Plasmids - genetics ; Plasmids - metabolism ; Recombinants ; Recombination, Genetic ; Yersinia pestis - enzymology ; Yersinia pestis - genetics ; Yersinia pestis - metabolism</subject><ispartof>Applied and environmental microbiology, 2017-09, Vol.83 (17)</ispartof><rights>Copyright © 2017 Yan et al.</rights><rights>Copyright American Society for Microbiology Sep 2017</rights><rights>Copyright © 2017 Yan et al. 2017 Yan et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</citedby><cites>FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561284/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5561284/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3188,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28646112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Müller, Volker</contributor><creatorcontrib>Yan, Mei-Yi</creatorcontrib><creatorcontrib>Yan, Hai-Qin</creatorcontrib><creatorcontrib>Ren, Gai-Xian</creatorcontrib><creatorcontrib>Zhao, Ju-Ping</creatorcontrib><creatorcontrib>Guo, Xiao-Peng</creatorcontrib><creatorcontrib>Sun, Yi-Cheng</creatorcontrib><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in
,
, and
Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.
The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</description><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Clustered Regularly Interspaced Short Palindromic Repeats</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>E coli</subject><subject>Endonucleases - genetics</subject><subject>Endonucleases - metabolism</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic Engineering</subject><subject>Genetics</subject><subject>Genome editing</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Methods</subject><subject>Mutation</subject><subject>Mycobacterium smegmatis - enzymology</subject><subject>Mycobacterium smegmatis - genetics</subject><subject>Mycobacterium smegmatis - metabolism</subject><subject>Plasmids</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Recombinants</subject><subject>Recombination, Genetic</subject><subject>Yersinia pestis - enzymology</subject><subject>Yersinia pestis - genetics</subject><subject>Yersinia pestis - metabolism</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkU1Lw0AQhhdRbK3ePEvBiwdTd3aT3eQi1FC1UFGqnpfNZlJT8lGzieC_d2trUZnDMDPPvMwHIadARwAsvNJYjiiNfOmB3CN9oFHoBZyLfdJ36chjzKc9cmTtklLqUxEekh4LhS9cd59APJ8-P829WFtg2htbm9sW0-EcTV0meYXY5NVimFfDG21aF-hjcpDpwuLJ1g_I6-3kJb73Zo9303g880zAoPVSzkwUMjSYMKQMklQYwRECk7DEcN8HgYyhRJ1lUhjMTKRByzSgwpn2-YBcb3RXXVJiarBqG12oVZOXuvlUtc7V30qVv6lF_aGCQLi7rAUutgJN_d6hbVWZW4NFoSusO6sgAs6jMJCRQ8__ocu6ayq3nqMCCZKClI663FCmqa1tMNsNA1Stf6HGkwf1_QsFa_zs9wI7-Of4_AtuMoNn</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Yan, Mei-Yi</creator><creator>Yan, Hai-Qin</creator><creator>Ren, Gai-Xian</creator><creator>Zhao, Ju-Ping</creator><creator>Guo, Xiao-Peng</creator><creator>Sun, Yi-Cheng</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170901</creationdate><title>CRISPR-Cas12a-Assisted Recombineering in Bacteria</title><author>Yan, Mei-Yi ; Yan, Hai-Qin ; Ren, Gai-Xian ; Zhao, Ju-Ping ; Guo, Xiao-Peng ; Sun, Yi-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Clustered Regularly Interspaced Short Palindromic Repeats</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>E coli</topic><topic>Endonucleases - genetics</topic><topic>Endonucleases - metabolism</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic Engineering</topic><topic>Genetics</topic><topic>Genome editing</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Methods</topic><topic>Mutation</topic><topic>Mycobacterium smegmatis - enzymology</topic><topic>Mycobacterium smegmatis - genetics</topic><topic>Mycobacterium smegmatis - metabolism</topic><topic>Plasmids</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Recombinants</topic><topic>Recombination, Genetic</topic><topic>Yersinia pestis - enzymology</topic><topic>Yersinia pestis - genetics</topic><topic>Yersinia pestis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Mei-Yi</creatorcontrib><creatorcontrib>Yan, Hai-Qin</creatorcontrib><creatorcontrib>Ren, Gai-Xian</creatorcontrib><creatorcontrib>Zhao, Ju-Ping</creatorcontrib><creatorcontrib>Guo, Xiao-Peng</creatorcontrib><creatorcontrib>Sun, Yi-Cheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Mei-Yi</au><au>Yan, Hai-Qin</au><au>Ren, Gai-Xian</au><au>Zhao, Ju-Ping</au><au>Guo, Xiao-Peng</au><au>Sun, Yi-Cheng</au><au>Müller, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR-Cas12a-Assisted Recombineering in Bacteria</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>83</volume><issue>17</issue><issn>0099-2240</issn><eissn>1098-5336</eissn><abstract>Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a (Cpf1) has emerged as an effective genome editing tool in many organisms. Here, we developed and optimized a CRISPR-Cas12a-assisted recombineering system to facilitate genetic manipulation in bacteria. Using this system, point mutations, deletions, insertions, and gene replacements can be easily generated on the chromosome or native plasmids in
,
, and
Because CRISPR-Cas12a-assisted recombineering does not require introduction of an antibiotic resistance gene into the chromosome to select for recombinants, it is an efficient approach for generating markerless and scarless mutations in bacteria.
The CRISPR-Cas9 system has been widely used to facilitate genome editing in many bacteria. CRISPR-Cas12a (Cpf1), a new type of CRISPR-Cas system, allows efficient genome editing in bacteria when combined with recombineering. Cas12a and Cas9 recognize different target sites, which allows for more precise selection of the cleavage target and introduction of the desired mutation. In addition, CRISPR-Cas12a-assisted recombineering can be used for genetic manipulation of plasmids and plasmid curing. Finally, Cas12a-assisted recombineering in the generation of point mutations, deletions, insertions, and replacements in bacteria has been systematically analyzed. Taken together, our findings will guide efficient Cas12a-mediated genome editing in bacteria.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>28646112</pmid><doi>10.1128/aem.00947-17</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and environmental microbiology, 2017-09, Vol.83 (17) |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5561284 |
source | American Society for Microbiology; PubMed Central(OpenAccess) |
subjects | Antibiotic resistance Antibiotics Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Clustered Regularly Interspaced Short Palindromic Repeats CRISPR CRISPR-Cas Systems E coli Endonucleases - genetics Endonucleases - metabolism Escherichia coli - enzymology Escherichia coli - genetics Escherichia coli - metabolism Genetic Engineering Genetics Genome editing Genomes Genomics Methods Mutation Mycobacterium smegmatis - enzymology Mycobacterium smegmatis - genetics Mycobacterium smegmatis - metabolism Plasmids Plasmids - genetics Plasmids - metabolism Recombinants Recombination, Genetic Yersinia pestis - enzymology Yersinia pestis - genetics Yersinia pestis - metabolism |
title | CRISPR-Cas12a-Assisted Recombineering in Bacteria |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T00%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR-Cas12a-Assisted%20Recombineering%20in%20Bacteria&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Yan,%20Mei-Yi&rft.date=2017-09-01&rft.volume=83&rft.issue=17&rft.issn=0099-2240&rft.eissn=1098-5336&rft_id=info:doi/10.1128/aem.00947-17&rft_dat=%3Cproquest_pubme%3E1957170177%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c521t-d32c982eceb2e021bd6c63e15cb2bc34416e22e7eaff76cefc9a1a7d506060a43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957170177&rft_id=info:pmid/28646112&rfr_iscdi=true |