Loading…
Comparative evaluation of chlorhexidine, grape seed extract, riboflavin/chitosan modification on microtensile bond strength of composite resin to dentin after polymerase chain reaction thermocycling: An in vitro study
The purpose of this study was to evaluate the influence of chlorhexidine (CHX), grape seed extract (GSE), riboflavin/chitosan modification on microtensile bond strength (μTBS) of composite resin to dentin after polymerase chain reaction (PCR) thermocycling. Forty extracted human molars were used and...
Saved in:
Published in: | Journal of conservative dentistry 2017-03, Vol.20 (2), p.120-124 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this study was to evaluate the influence of chlorhexidine (CHX), grape seed extract (GSE), riboflavin/chitosan modification on microtensile bond strength (μTBS) of composite resin to dentin after polymerase chain reaction (PCR) thermocycling.
Forty extracted human molars were used and a flat surface was then prepared by removing the occlusal one-third. The teeth were randomly assigned into four groups - Group I in which self-etch adhesive (Adper Easy One) was applied and Groups II, III, IV were pretreated with 2% CHX, 6.5% GSE, and 1% riboflavin/chitosan, respectively, before the application of self-etch adhesive. Composite build-ups were constructed, and PCR thermocycling (5000 cycles) was performed. The μTBS was evaluated using the universal testing machine. Data were analyzed using one-way analysis of variance and Tukey's test.
The mean μTBS values for Group I (control), Group II (CHX), Group III (GSE), and Group IV (riboflavin/chitosan modification) were 30.81, 43.15, 38.79, and 35.07 MPa, respectively.
Pretreatment with CHX and GSE leads to a significant increase in μTBS of composite resin to dentin. |
---|---|
ISSN: | 0972-0707 0974-5203 |
DOI: | 10.4103/0972-0707.212241 |