Loading…

Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis

O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2017-08, Vol.114 (33), p.E6749-E6758
Main Authors: Qin, Wei, Lv, Pinou, Fan, Xinqi, Quan, Baiyi, Zhu, Yuntao, Qin, Ke, Chen, Ying, Wang, Chu, Chen, Xing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423
cites cdi_FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423
container_end_page E6758
container_issue 33
container_start_page E6749
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 114
creator Qin, Wei
Lv, Pinou
Fan, Xinqi
Quan, Baiyi
Zhu, Yuntao
Qin, Ke
Chen, Ying
Wang, Chu
Chen, Xing
description O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.
doi_str_mv 10.1073/pnas.1702688114
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26487066</jstor_id><sourcerecordid>26487066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423</originalsourceid><addsrcrecordid>eNpdkc1v1DAUxC0EokvhzAlkiUsv6T4n_soFqVpKQapaQHC2HOdl10sSL7azgv-erLa0wOkd5jejNxpCXjI4Z6Cq5W606ZwpKKXWjPFHZMGgZoXkNTwmC4BSFZqX_IQ8S2kLALXQ8JSclFpJqKVYkO-fJztmn232e6TZD1hETKHfY0vdBoewiyFjGLxLNOIebZ9o3thMU7ZNj_S2uOrdzYWbxfXU24yJNuEnXS3f0TSGLzefaOPDGkdMPj0nT7rZjy_u7in59v7y6-pDcX179XF1cV04zqtcuEo7a7mwttUd465uJSjXCtDMqkbKrhQVKOVc12lwDdTAeGuFkCC0Y7ysTsnbY-5uagZsHY452t7soh9s_GWC9eZfZfQbsw57M2cIXh4Czu4CYvgxYcpm8Mlh39sRw5QMq0tRqopzOaNv_kO3YYrjXG-muORCVqqeqeWRcjGkFLG7f4aBOQxpDkOahyFnx-u_O9zzf5abgVdHYJtyiA-65FqBlNVvxOak6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1946456379</pqid></control><display><type>article</type><title>Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Qin, Wei ; Lv, Pinou ; Fan, Xinqi ; Quan, Baiyi ; Zhu, Yuntao ; Qin, Ke ; Chen, Ying ; Wang, Chu ; Chen, Xing</creator><creatorcontrib>Qin, Wei ; Lv, Pinou ; Fan, Xinqi ; Quan, Baiyi ; Zhu, Yuntao ; Qin, Ke ; Chen, Ying ; Wang, Chu ; Chen, Xing</creatorcontrib><description>O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1702688114</identifier><identifier>PMID: 28760965</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Biological Sciences ; Biosynthesis ; Cancer ; Cell culture ; Cell proliferation ; DNA methylation ; Fibrillarin ; Labeling ; Nucleoli ; O-GlcNAcylation ; Physical Sciences ; PNAS Plus ; Proteins ; Proteomics ; Ribonucleoproteins (small nucleolar)</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (33), p.E6749-E6758</ispartof><rights>Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Aug 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423</citedby><cites>FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423</cites><orcidid>0000-0002-3058-7370</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26487066$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26487066$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792,58237,58470</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28760965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qin, Wei</creatorcontrib><creatorcontrib>Lv, Pinou</creatorcontrib><creatorcontrib>Fan, Xinqi</creatorcontrib><creatorcontrib>Quan, Baiyi</creatorcontrib><creatorcontrib>Zhu, Yuntao</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Wang, Chu</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><title>Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.</description><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Cell proliferation</subject><subject>DNA methylation</subject><subject>Fibrillarin</subject><subject>Labeling</subject><subject>Nucleoli</subject><subject>O-GlcNAcylation</subject><subject>Physical Sciences</subject><subject>PNAS Plus</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Ribonucleoproteins (small nucleolar)</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpdkc1v1DAUxC0EokvhzAlkiUsv6T4n_soFqVpKQapaQHC2HOdl10sSL7azgv-erLa0wOkd5jejNxpCXjI4Z6Cq5W606ZwpKKXWjPFHZMGgZoXkNTwmC4BSFZqX_IQ8S2kLALXQ8JSclFpJqKVYkO-fJztmn232e6TZD1hETKHfY0vdBoewiyFjGLxLNOIebZ9o3thMU7ZNj_S2uOrdzYWbxfXU24yJNuEnXS3f0TSGLzefaOPDGkdMPj0nT7rZjy_u7in59v7y6-pDcX179XF1cV04zqtcuEo7a7mwttUd465uJSjXCtDMqkbKrhQVKOVc12lwDdTAeGuFkCC0Y7ysTsnbY-5uagZsHY452t7soh9s_GWC9eZfZfQbsw57M2cIXh4Czu4CYvgxYcpm8Mlh39sRw5QMq0tRqopzOaNv_kO3YYrjXG-muORCVqqeqeWRcjGkFLG7f4aBOQxpDkOahyFnx-u_O9zzf5abgVdHYJtyiA-65FqBlNVvxOak6w</recordid><startdate>20170815</startdate><enddate>20170815</enddate><creator>Qin, Wei</creator><creator>Lv, Pinou</creator><creator>Fan, Xinqi</creator><creator>Quan, Baiyi</creator><creator>Zhu, Yuntao</creator><creator>Qin, Ke</creator><creator>Chen, Ying</creator><creator>Wang, Chu</creator><creator>Chen, Xing</creator><general>National Academy of Sciences</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3058-7370</orcidid></search><sort><creationdate>20170815</creationdate><title>Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis</title><author>Qin, Wei ; Lv, Pinou ; Fan, Xinqi ; Quan, Baiyi ; Zhu, Yuntao ; Qin, Ke ; Chen, Ying ; Wang, Chu ; Chen, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Cell proliferation</topic><topic>DNA methylation</topic><topic>Fibrillarin</topic><topic>Labeling</topic><topic>Nucleoli</topic><topic>O-GlcNAcylation</topic><topic>Physical Sciences</topic><topic>PNAS Plus</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Ribonucleoproteins (small nucleolar)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qin, Wei</creatorcontrib><creatorcontrib>Lv, Pinou</creatorcontrib><creatorcontrib>Fan, Xinqi</creatorcontrib><creatorcontrib>Quan, Baiyi</creatorcontrib><creatorcontrib>Zhu, Yuntao</creatorcontrib><creatorcontrib>Qin, Ke</creatorcontrib><creatorcontrib>Chen, Ying</creatorcontrib><creatorcontrib>Wang, Chu</creatorcontrib><creatorcontrib>Chen, Xing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qin, Wei</au><au>Lv, Pinou</au><au>Fan, Xinqi</au><au>Quan, Baiyi</au><au>Zhu, Yuntao</au><au>Qin, Ke</au><au>Chen, Ying</au><au>Wang, Chu</au><au>Chen, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2017-08-15</date><risdate>2017</risdate><volume>114</volume><issue>33</issue><spage>E6749</spage><epage>E6758</epage><pages>E6749-E6758</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2′-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>28760965</pmid><doi>10.1073/pnas.1702688114</doi><orcidid>https://orcid.org/0000-0002-3058-7370</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2017-08, Vol.114 (33), p.E6749-E6758
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5565422
source Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection
subjects Amino acids
Biological Sciences
Biosynthesis
Cancer
Cell culture
Cell proliferation
DNA methylation
Fibrillarin
Labeling
Nucleoli
O-GlcNAcylation
Physical Sciences
PNAS Plus
Proteins
Proteomics
Ribonucleoproteins (small nucleolar)
title Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20time-resolved%20chemoproteomics%20reveals%20that%20stable%20O-GlcNAc%20regulates%20box%20C/D%20snoRNP%20biogenesis&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Qin,%20Wei&rft.date=2017-08-15&rft.volume=114&rft.issue=33&rft.spage=E6749&rft.epage=E6758&rft.pages=E6749-E6758&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1702688114&rft_dat=%3Cjstor_pubme%3E26487066%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-c38caa45aad8f14c9d607cd5081a7b66f253077ccff80cb09014da556058c1423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1946456379&rft_id=info:pmid/28760965&rft_jstor_id=26487066&rfr_iscdi=true