Loading…

Regulation of CFTR expression and function during differentiation of intestinal epithelial cells

CFTR, the protein defective in cystic fibrosis is regulated during differentiation of intestinal epithelial cells. The undifferentiated cells (Caco‐2 and HT‐29) show a lower level of CFTR mRNA, while a 10‐fold increase is seen in differentiated cells. These differences correlate well with those of o...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 1992-07, Vol.11 (7), p.2487-2494
Main Authors: Sood, R., Bear, C., Auerbach, W., Reyes, E., Jensen, T., Kartner, N., Riordan, J.R., Buchwald, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5383-80a3dc0082b344798e9ea7303ea781ce5f474331b626d87662fad3a4d521bce13
cites
container_end_page 2494
container_issue 7
container_start_page 2487
container_title The EMBO journal
container_volume 11
creator Sood, R.
Bear, C.
Auerbach, W.
Reyes, E.
Jensen, T.
Kartner, N.
Riordan, J.R.
Buchwald, M.
description CFTR, the protein defective in cystic fibrosis is regulated during differentiation of intestinal epithelial cells. The undifferentiated cells (Caco‐2 and HT‐29) show a lower level of CFTR mRNA, while a 10‐fold increase is seen in differentiated cells. These differences correlate well with those of other intestinal‐specific genes, including sucrase‐isomaltase, villin and alpha 1‐antitrypsin, indicating that the regulation is cell specific. In Caco‐2 cells the increase in CFTR mRNA cannot be accounted for by increased transcription of the gene. These data indicate that CFTR mRNA stabilizing factor(s) might be present in differentiated cells. The higher levels of CFTR mRNA in differentiated cells are accompanied by decreased protein levels, indicating, as well, involvement of translational control in the regulation of CFTR in these cells. Finally, fully differentiated cells show lowered levels of cyclic AMP‐activated C1‐ transport, the characteristic function of CFTR. Thus, CFTR function in differentiated cells is modulated by a complex interaction of regulatory elements. Caco‐2 and HT‐29 cells provide a suitable in vitro system in which to study the mechanism of regulation of CFTR.
doi_str_mv 10.1002/j.1460-2075.1992.tb05313.x
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_556723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16238379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5383-80a3dc0082b344798e9ea7303ea781ce5f474331b626d87662fad3a4d521bce13</originalsourceid><addsrcrecordid>eNqVUV1rFDEUDaLUbfUnCIOIbzPmc5IIPtSl9YOKUOpzzGSSbZZsZk1m7Pbfm-kuqz6JL_decs4J53AAeIlggyDEb9YNoi2sMeSsQVLiZuwgI4g0u0dgcYQegwXELaopEvIpOM15DSFkgqMTcIIIF0SSBfh-bVdT0KMfYjW4anl5c13Z3TbZnOcnHfvKTdE84P2UfFxVvXfOJhtHf5T5ONo8-qhDZbd-vLXBl9PYEPIz8MTpkO3zwz4D3y4vbpYf66uvHz4tz69qw4ggtYCa9AZCgTtCKZfCSqs5gaRMgYxljnJKCOpa3PaCty12uiea9gyjzlhEzsC7_b_bqdvY3hR_SQe1TX6j070atFd_I9HfqtXwUzHWckyK_vVBn4YfU0mjNj7PCXS0w5RV8cKhbOk_iajFJRCXhfh2TzRpyDlZdzSDoJp7VGs1l6XmstTcozr0qHZF_OLPOL-l--IK_uqA62x0cElH4_ORxgiTjM608z3tzgd7_x8G1MWX958fbvILCoK84Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16238379</pqid></control><display><type>article</type><title>Regulation of CFTR expression and function during differentiation of intestinal epithelial cells</title><source>PubMed Central Free</source><creator>Sood, R. ; Bear, C. ; Auerbach, W. ; Reyes, E. ; Jensen, T. ; Kartner, N. ; Riordan, J.R. ; Buchwald, M.</creator><creatorcontrib>Sood, R. ; Bear, C. ; Auerbach, W. ; Reyes, E. ; Jensen, T. ; Kartner, N. ; Riordan, J.R. ; Buchwald, M.</creatorcontrib><description>CFTR, the protein defective in cystic fibrosis is regulated during differentiation of intestinal epithelial cells. The undifferentiated cells (Caco‐2 and HT‐29) show a lower level of CFTR mRNA, while a 10‐fold increase is seen in differentiated cells. These differences correlate well with those of other intestinal‐specific genes, including sucrase‐isomaltase, villin and alpha 1‐antitrypsin, indicating that the regulation is cell specific. In Caco‐2 cells the increase in CFTR mRNA cannot be accounted for by increased transcription of the gene. These data indicate that CFTR mRNA stabilizing factor(s) might be present in differentiated cells. The higher levels of CFTR mRNA in differentiated cells are accompanied by decreased protein levels, indicating, as well, involvement of translational control in the regulation of CFTR in these cells. Finally, fully differentiated cells show lowered levels of cyclic AMP‐activated C1‐ transport, the characteristic function of CFTR. Thus, CFTR function in differentiated cells is modulated by a complex interaction of regulatory elements. Caco‐2 and HT‐29 cells provide a suitable in vitro system in which to study the mechanism of regulation of CFTR.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1002/j.1460-2075.1992.tb05313.x</identifier><identifier>PMID: 1378393</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Biological and medical sciences ; Blotting, Western ; Carrier Proteins - genetics ; Cell Differentiation ; cells ; Colon - cytology ; Colon - metabolism ; cystic fibrosis ; Cystic Fibrosis - metabolism ; Cystic Fibrosis Transmembrane Conductance Regulator ; differentiation ; Epithelial Cells ; Epithelium - metabolism ; expression ; function ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation ; intestine ; Iodine Radioisotopes - metabolism ; Membrane Proteins - genetics ; Microfilament Proteins - genetics ; Molecular and cellular biology ; Molecular genetics ; regulation ; RNA, Messenger - metabolism ; Transcription, Genetic ; transmembrane conductance regulator ; Tumor Cells, Cultured</subject><ispartof>The EMBO journal, 1992-07, Vol.11 (7), p.2487-2494</ispartof><rights>1992 European Molecular Biology Organization</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5383-80a3dc0082b344798e9ea7303ea781ce5f474331b626d87662fad3a4d521bce13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC556723/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC556723/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5359543$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1378393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sood, R.</creatorcontrib><creatorcontrib>Bear, C.</creatorcontrib><creatorcontrib>Auerbach, W.</creatorcontrib><creatorcontrib>Reyes, E.</creatorcontrib><creatorcontrib>Jensen, T.</creatorcontrib><creatorcontrib>Kartner, N.</creatorcontrib><creatorcontrib>Riordan, J.R.</creatorcontrib><creatorcontrib>Buchwald, M.</creatorcontrib><title>Regulation of CFTR expression and function during differentiation of intestinal epithelial cells</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><description>CFTR, the protein defective in cystic fibrosis is regulated during differentiation of intestinal epithelial cells. The undifferentiated cells (Caco‐2 and HT‐29) show a lower level of CFTR mRNA, while a 10‐fold increase is seen in differentiated cells. These differences correlate well with those of other intestinal‐specific genes, including sucrase‐isomaltase, villin and alpha 1‐antitrypsin, indicating that the regulation is cell specific. In Caco‐2 cells the increase in CFTR mRNA cannot be accounted for by increased transcription of the gene. These data indicate that CFTR mRNA stabilizing factor(s) might be present in differentiated cells. The higher levels of CFTR mRNA in differentiated cells are accompanied by decreased protein levels, indicating, as well, involvement of translational control in the regulation of CFTR in these cells. Finally, fully differentiated cells show lowered levels of cyclic AMP‐activated C1‐ transport, the characteristic function of CFTR. Thus, CFTR function in differentiated cells is modulated by a complex interaction of regulatory elements. Caco‐2 and HT‐29 cells provide a suitable in vitro system in which to study the mechanism of regulation of CFTR.</description><subject>Biological and medical sciences</subject><subject>Blotting, Western</subject><subject>Carrier Proteins - genetics</subject><subject>Cell Differentiation</subject><subject>cells</subject><subject>Colon - cytology</subject><subject>Colon - metabolism</subject><subject>cystic fibrosis</subject><subject>Cystic Fibrosis - metabolism</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator</subject><subject>differentiation</subject><subject>Epithelial Cells</subject><subject>Epithelium - metabolism</subject><subject>expression</subject><subject>function</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>intestine</subject><subject>Iodine Radioisotopes - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Microfilament Proteins - genetics</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>regulation</subject><subject>RNA, Messenger - metabolism</subject><subject>Transcription, Genetic</subject><subject>transmembrane conductance regulator</subject><subject>Tumor Cells, Cultured</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNqVUV1rFDEUDaLUbfUnCIOIbzPmc5IIPtSl9YOKUOpzzGSSbZZsZk1m7Pbfm-kuqz6JL_decs4J53AAeIlggyDEb9YNoi2sMeSsQVLiZuwgI4g0u0dgcYQegwXELaopEvIpOM15DSFkgqMTcIIIF0SSBfh-bVdT0KMfYjW4anl5c13Z3TbZnOcnHfvKTdE84P2UfFxVvXfOJhtHf5T5ONo8-qhDZbd-vLXBl9PYEPIz8MTpkO3zwz4D3y4vbpYf66uvHz4tz69qw4ggtYCa9AZCgTtCKZfCSqs5gaRMgYxljnJKCOpa3PaCty12uiea9gyjzlhEzsC7_b_bqdvY3hR_SQe1TX6j070atFd_I9HfqtXwUzHWckyK_vVBn4YfU0mjNj7PCXS0w5RV8cKhbOk_iajFJRCXhfh2TzRpyDlZdzSDoJp7VGs1l6XmstTcozr0qHZF_OLPOL-l--IK_uqA62x0cElH4_ORxgiTjM608z3tzgd7_x8G1MWX958fbvILCoK84Q</recordid><startdate>199207</startdate><enddate>199207</enddate><creator>Sood, R.</creator><creator>Bear, C.</creator><creator>Auerbach, W.</creator><creator>Reyes, E.</creator><creator>Jensen, T.</creator><creator>Kartner, N.</creator><creator>Riordan, J.R.</creator><creator>Buchwald, M.</creator><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7Z</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199207</creationdate><title>Regulation of CFTR expression and function during differentiation of intestinal epithelial cells</title><author>Sood, R. ; Bear, C. ; Auerbach, W. ; Reyes, E. ; Jensen, T. ; Kartner, N. ; Riordan, J.R. ; Buchwald, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5383-80a3dc0082b344798e9ea7303ea781ce5f474331b626d87662fad3a4d521bce13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Biological and medical sciences</topic><topic>Blotting, Western</topic><topic>Carrier Proteins - genetics</topic><topic>Cell Differentiation</topic><topic>cells</topic><topic>Colon - cytology</topic><topic>Colon - metabolism</topic><topic>cystic fibrosis</topic><topic>Cystic Fibrosis - metabolism</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator</topic><topic>differentiation</topic><topic>Epithelial Cells</topic><topic>Epithelium - metabolism</topic><topic>expression</topic><topic>function</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>intestine</topic><topic>Iodine Radioisotopes - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Microfilament Proteins - genetics</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>regulation</topic><topic>RNA, Messenger - metabolism</topic><topic>Transcription, Genetic</topic><topic>transmembrane conductance regulator</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sood, R.</creatorcontrib><creatorcontrib>Bear, C.</creatorcontrib><creatorcontrib>Auerbach, W.</creatorcontrib><creatorcontrib>Reyes, E.</creatorcontrib><creatorcontrib>Jensen, T.</creatorcontrib><creatorcontrib>Kartner, N.</creatorcontrib><creatorcontrib>Riordan, J.R.</creatorcontrib><creatorcontrib>Buchwald, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sood, R.</au><au>Bear, C.</au><au>Auerbach, W.</au><au>Reyes, E.</au><au>Jensen, T.</au><au>Kartner, N.</au><au>Riordan, J.R.</au><au>Buchwald, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of CFTR expression and function during differentiation of intestinal epithelial cells</atitle><jtitle>The EMBO journal</jtitle><addtitle>EMBO J</addtitle><date>1992-07</date><risdate>1992</risdate><volume>11</volume><issue>7</issue><spage>2487</spage><epage>2494</epage><pages>2487-2494</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>CFTR, the protein defective in cystic fibrosis is regulated during differentiation of intestinal epithelial cells. The undifferentiated cells (Caco‐2 and HT‐29) show a lower level of CFTR mRNA, while a 10‐fold increase is seen in differentiated cells. These differences correlate well with those of other intestinal‐specific genes, including sucrase‐isomaltase, villin and alpha 1‐antitrypsin, indicating that the regulation is cell specific. In Caco‐2 cells the increase in CFTR mRNA cannot be accounted for by increased transcription of the gene. These data indicate that CFTR mRNA stabilizing factor(s) might be present in differentiated cells. The higher levels of CFTR mRNA in differentiated cells are accompanied by decreased protein levels, indicating, as well, involvement of translational control in the regulation of CFTR in these cells. Finally, fully differentiated cells show lowered levels of cyclic AMP‐activated C1‐ transport, the characteristic function of CFTR. Thus, CFTR function in differentiated cells is modulated by a complex interaction of regulatory elements. Caco‐2 and HT‐29 cells provide a suitable in vitro system in which to study the mechanism of regulation of CFTR.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><pmid>1378393</pmid><doi>10.1002/j.1460-2075.1992.tb05313.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 1992-07, Vol.11 (7), p.2487-2494
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_556723
source PubMed Central Free
subjects Biological and medical sciences
Blotting, Western
Carrier Proteins - genetics
Cell Differentiation
cells
Colon - cytology
Colon - metabolism
cystic fibrosis
Cystic Fibrosis - metabolism
Cystic Fibrosis Transmembrane Conductance Regulator
differentiation
Epithelial Cells
Epithelium - metabolism
expression
function
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation
intestine
Iodine Radioisotopes - metabolism
Membrane Proteins - genetics
Microfilament Proteins - genetics
Molecular and cellular biology
Molecular genetics
regulation
RNA, Messenger - metabolism
Transcription, Genetic
transmembrane conductance regulator
Tumor Cells, Cultured
title Regulation of CFTR expression and function during differentiation of intestinal epithelial cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20CFTR%20expression%20and%20function%20during%20differentiation%20of%20intestinal%20epithelial%20cells&rft.jtitle=The%20EMBO%20journal&rft.au=Sood,%20R.&rft.date=1992-07&rft.volume=11&rft.issue=7&rft.spage=2487&rft.epage=2494&rft.pages=2487-2494&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1002/j.1460-2075.1992.tb05313.x&rft_dat=%3Cproquest_pubme%3E16238379%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5383-80a3dc0082b344798e9ea7303ea781ce5f474331b626d87662fad3a4d521bce13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16238379&rft_id=info:pmid/1378393&rfr_iscdi=true