Loading…

Local tumor control and DNA-PK activity of peripheral blood lymphocytes in prostate cancer patients receiving radiotherapy

Abstract Repair of DNA damage is critical for genomic stability, and DNA-dependent protein kinase (DNA-PK) has an important role in repairing double-strand breaks. We examined whether the DNA-PK activity of peripheral blood lymphocytes (PBLs) was related to biochemical (prostate-specific antigen: PS...

Full description

Saved in:
Bibliographic Details
Published in:Journal of radiation research 2017-03, Vol.58 (2), p.225-231
Main Authors: Someya, Masanori, Hasegawa, Tomokazu, Hori, Masakazu, Matsumoto, Yoshihisa, Nakata, Kensei, Masumori, Naoya, Sakata, Koh-ichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Repair of DNA damage is critical for genomic stability, and DNA-dependent protein kinase (DNA-PK) has an important role in repairing double-strand breaks. We examined whether the DNA-PK activity of peripheral blood lymphocytes (PBLs) was related to biochemical (prostate-specific antigen: PSA) relapse and radiation toxicity in prostate cancer patients who have received radiotherapy. A total of 69 patients with localized adenocarcinoma of the prostate participated in this study. Peripheral blood was collected 2 years or later after radiotherapy and centrifuged, then DNA-PK activity was measured by a filter binding assay. The high DNA-PK activity group had a significantly higher PSA relapse–free survival rate than the low DNA-PK activity group. The 10-year PSA relapse–free survival was 87.0% in the high DNA-PK activity group, whereas it was 52.7% in the low DNA-PK activity group. Multivariate analysis showed the Gleason score and the level of DNA-PK activity were significant predictors of PSA relapse after radiotherapy. In addition, the low DNA-PK activity group tended to have a higher incidence of Grade 1–2 urinary toxicity than the high DNA-PK activity group. Prostate cancer patients with low DNA-PK activity had a higher rate of PSA relapse and a higher incidence of urinary toxicity. DNA-PK activity in PBLs might be a useful marker for predicting PSA relapse and urinary toxicity, possibly contributing to personalized treatment of prostate cancer.
ISSN:0449-3060
1349-9157
DOI:10.1093/jrr/rrw099