Loading…
Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases
Objectives. The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP) and carbonylated proteins, expressed as protein carbonyl content (C=O) in abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AI...
Saved in:
Published in: | BioMed research international 2017-01, Vol.2017 (2017), p.1-9 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives. The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP) and carbonylated proteins, expressed as protein carbonyl content (C=O) in abdominal aortic aneurysms (AAA), aortoiliac occlusive disease (AIOD), and chronic kidney disease (CKD). Design and Methods. The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE) included 50 patients or hemodialysis (HD) consisted of 34 patients. AOPP and C=O were measured using colorimetric assay kit, while C-reactive protein concentration was measured by high-sensitivity assay (hsCRP). Results. The concentration of AOPP in both AAA and AIOD groups was higher than in PRE and HD groups according to descending order: AAA~AIOD > HD > PRE. The content of C=O was higher in the PRE group in comparison to AIOD and AAA according to the descending order: PRE~HD > AAA~AIOD. Conclusions. AAA, AIOD, and CKD-related atherosclerosis (PRE and HD) contribute to the changes in the formation of AOPP and C=O. They may promote modification of proteins in a different way, probably due to the various factors that influence oxidative stress here. |
---|---|
ISSN: | 2314-6133 2314-6141 |
DOI: | 10.1155/2017/4975264 |