Loading…

TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans

In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The p...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.9723-16, Article 9723
Main Authors: Capitanio, Daniele, Fania, Chiara, Torretta, Enrica, Viganò, Agnese, Moriggi, Manuela, Bravatà, Valentina, Caretti, Anna, Levett, Denny Z. H., Grocott, Michael P. W., Samaja, Michele, Cerretelli, Paolo, Gelfi, Cecilia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3
cites cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3
container_end_page 16
container_issue 1
container_start_page 9723
container_title Scientific reports
container_volume 7
creator Capitanio, Daniele
Fania, Chiara
Torretta, Enrica
Viganò, Agnese
Moriggi, Manuela
Bravatà, Valentina
Caretti, Anna
Levett, Denny Z. H.
Grocott, Michael P. W.
Samaja, Michele
Cerretelli, Paolo
Gelfi, Cecilia
description In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.
doi_str_mv 10.1038/s41598-017-10097-4
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957861277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</originalsourceid><addsrcrecordid>eNp1kU1vFSEUhonR2Kb2D7gwJG7cjPJZYGPS3PiVNHFT1wSYM7fUGRhhxnr_vdze2lxNZAPhPLyckwehl5S8pYTrd1VQaXRHqOooIUZ14gk6ZUTIjnHGnh6dT9B5rbekLcmMoOY5OmFay1ZXp2i-3lzisAsj4AJ3scS0xUOuC5SKJ1icz2MM2PVuXtwSc8JLxvnXbgup8XUpMdzfxoTrdxjbgxFPa93HDSVPuOQe0lKxSz2-WSeX6gv0bHBjhfOH_Qx9-_jhevO5u_r66cvm8qoLQoml8xdEBiM8D1xKb7zruVYGyCCZDMz3RBPCgxbegyYUvBAuwDCIwJxUAwR-ht4fcufVT9CH1kZxo51LnFzZ2eyi_buS4o3d5p9WSiWpEC3gzUNAyT_WNqudYg0wji5BXqulhnMjmgXW0Nf_oLd5LamN1yip9AVlSjWKHahQcq0FhsdmKLF7p_bg1Dan9t6p3Xfx6niMxyd_DDaAH4A67-VBOfr7_7G_ASr6r6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957861277</pqid></control><display><type>article</type><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</creator><creatorcontrib>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</creatorcontrib><description>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-10097-4</identifier><identifier>PMID: 28852047</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/77 ; 631/45/475/2290 ; 692/4017 ; 82 ; 82/1 ; 82/29 ; 82/58 ; Adaptation, Physiological ; Animals ; Autophagy ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Citric Acid Cycle ; Energy demand ; Energy Metabolism ; Enzymatic activity ; Gene Expression ; Glutamine ; Hexosamines - metabolism ; High-altitude environments ; Homeostasis ; Human subjects ; Humanities and Social Sciences ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Metabolic Networks and Pathways ; Metabolism ; Models, Biological ; multidisciplinary ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Oxygen - metabolism ; Proteome ; Proteomics ; Proteomics - methods ; Rodentia ; Rodents ; Science ; Science (multidisciplinary) ; Signal Transduction ; Skeletal muscle ; Time Factors ; Tricarboxylic acid cycle</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.9723-16, Article 9723</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</citedby><cites>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</cites><orcidid>0000-0001-7701-728X ; 0000-0001-6140-6969 ; 0000-0002-2996-6912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957861277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957861277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28852047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Fania, Chiara</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Viganò, Agnese</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Bravatà, Valentina</creatorcontrib><creatorcontrib>Caretti, Anna</creatorcontrib><creatorcontrib>Levett, Denny Z. H.</creatorcontrib><creatorcontrib>Grocott, Michael P. W.</creatorcontrib><creatorcontrib>Samaja, Michele</creatorcontrib><creatorcontrib>Cerretelli, Paolo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</description><subject>38</subject><subject>38/77</subject><subject>631/45/475/2290</subject><subject>692/4017</subject><subject>82</subject><subject>82/1</subject><subject>82/29</subject><subject>82/58</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Citric Acid Cycle</subject><subject>Energy demand</subject><subject>Energy Metabolism</subject><subject>Enzymatic activity</subject><subject>Gene Expression</subject><subject>Glutamine</subject><subject>Hexosamines - metabolism</subject><subject>High-altitude environments</subject><subject>Homeostasis</subject><subject>Human subjects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Oxygen - metabolism</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Time Factors</subject><subject>Tricarboxylic acid cycle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU1vFSEUhonR2Kb2D7gwJG7cjPJZYGPS3PiVNHFT1wSYM7fUGRhhxnr_vdze2lxNZAPhPLyckwehl5S8pYTrd1VQaXRHqOooIUZ14gk6ZUTIjnHGnh6dT9B5rbekLcmMoOY5OmFay1ZXp2i-3lzisAsj4AJ3scS0xUOuC5SKJ1icz2MM2PVuXtwSc8JLxvnXbgup8XUpMdzfxoTrdxjbgxFPa93HDSVPuOQe0lKxSz2-WSeX6gv0bHBjhfOH_Qx9-_jhevO5u_r66cvm8qoLQoml8xdEBiM8D1xKb7zruVYGyCCZDMz3RBPCgxbegyYUvBAuwDCIwJxUAwR-ht4fcufVT9CH1kZxo51LnFzZ2eyi_buS4o3d5p9WSiWpEC3gzUNAyT_WNqudYg0wji5BXqulhnMjmgXW0Nf_oLd5LamN1yip9AVlSjWKHahQcq0FhsdmKLF7p_bg1Dan9t6p3Xfx6niMxyd_DDaAH4A67-VBOfr7_7G_ASr6r6g</recordid><startdate>20170829</startdate><enddate>20170829</enddate><creator>Capitanio, Daniele</creator><creator>Fania, Chiara</creator><creator>Torretta, Enrica</creator><creator>Viganò, Agnese</creator><creator>Moriggi, Manuela</creator><creator>Bravatà, Valentina</creator><creator>Caretti, Anna</creator><creator>Levett, Denny Z. H.</creator><creator>Grocott, Michael P. W.</creator><creator>Samaja, Michele</creator><creator>Cerretelli, Paolo</creator><creator>Gelfi, Cecilia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0001-6140-6969</orcidid><orcidid>https://orcid.org/0000-0002-2996-6912</orcidid></search><sort><creationdate>20170829</creationdate><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><author>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>38/77</topic><topic>631/45/475/2290</topic><topic>692/4017</topic><topic>82</topic><topic>82/1</topic><topic>82/29</topic><topic>82/58</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Citric Acid Cycle</topic><topic>Energy demand</topic><topic>Energy Metabolism</topic><topic>Enzymatic activity</topic><topic>Gene Expression</topic><topic>Glutamine</topic><topic>Hexosamines - metabolism</topic><topic>High-altitude environments</topic><topic>Homeostasis</topic><topic>Human subjects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Oxygen - metabolism</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Time Factors</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Fania, Chiara</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Viganò, Agnese</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Bravatà, Valentina</creatorcontrib><creatorcontrib>Caretti, Anna</creatorcontrib><creatorcontrib>Levett, Denny Z. H.</creatorcontrib><creatorcontrib>Grocott, Michael P. W.</creatorcontrib><creatorcontrib>Samaja, Michele</creatorcontrib><creatorcontrib>Cerretelli, Paolo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capitanio, Daniele</au><au>Fania, Chiara</au><au>Torretta, Enrica</au><au>Viganò, Agnese</au><au>Moriggi, Manuela</au><au>Bravatà, Valentina</au><au>Caretti, Anna</au><au>Levett, Denny Z. H.</au><au>Grocott, Michael P. W.</au><au>Samaja, Michele</au><au>Cerretelli, Paolo</au><au>Gelfi, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-29</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>9723</spage><epage>16</epage><pages>9723-16</pages><artnum>9723</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O 2 delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28852047</pmid><doi>10.1038/s41598-017-10097-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0001-6140-6969</orcidid><orcidid>https://orcid.org/0000-0002-2996-6912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-08, Vol.7 (1), p.9723-16, Article 9723
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575144
source Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access
subjects 38
38/77
631/45/475/2290
692/4017
82
82/1
82/29
82/58
Adaptation, Physiological
Animals
Autophagy
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Citric Acid Cycle
Energy demand
Energy Metabolism
Enzymatic activity
Gene Expression
Glutamine
Hexosamines - metabolism
High-altitude environments
Homeostasis
Human subjects
Humanities and Social Sciences
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Metabolic Networks and Pathways
Metabolism
Models, Biological
multidisciplinary
Muscle, Skeletal - metabolism
Musculoskeletal system
Oxygen - metabolism
Proteome
Proteomics
Proteomics - methods
Rodentia
Rodents
Science
Science (multidisciplinary)
Signal Transduction
Skeletal muscle
Time Factors
Tricarboxylic acid cycle
title TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCA%20cycle%20rewiring%20fosters%20metabolic%20adaptation%20to%20oxygen%20restriction%20in%20skeletal%20muscle%20from%20rodents%20and%20humans&rft.jtitle=Scientific%20reports&rft.au=Capitanio,%20Daniele&rft.date=2017-08-29&rft.volume=7&rft.issue=1&rft.spage=9723&rft.epage=16&rft.pages=9723-16&rft.artnum=9723&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-10097-4&rft_dat=%3Cproquest_pubme%3E1957861277%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957861277&rft_id=info:pmid/28852047&rfr_iscdi=true