Loading…
TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans
In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O 2 delivery by tuning its metabolism. The p...
Saved in:
Published in: | Scientific reports 2017-08, Vol.7 (1), p.9723-16, Article 9723 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3 |
container_end_page | 16 |
container_issue | 1 |
container_start_page | 9723 |
container_title | Scientific reports |
container_volume | 7 |
creator | Capitanio, Daniele Fania, Chiara Torretta, Enrica Viganò, Agnese Moriggi, Manuela Bravatà, Valentina Caretti, Anna Levett, Denny Z. H. Grocott, Michael P. W. Samaja, Michele Cerretelli, Paolo Gelfi, Cecilia |
description | In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O
2
delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O
2
delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia. |
doi_str_mv | 10.1038/s41598-017-10097-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1957861277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</originalsourceid><addsrcrecordid>eNp1kU1vFSEUhonR2Kb2D7gwJG7cjPJZYGPS3PiVNHFT1wSYM7fUGRhhxnr_vdze2lxNZAPhPLyckwehl5S8pYTrd1VQaXRHqOooIUZ14gk6ZUTIjnHGnh6dT9B5rbekLcmMoOY5OmFay1ZXp2i-3lzisAsj4AJ3scS0xUOuC5SKJ1icz2MM2PVuXtwSc8JLxvnXbgup8XUpMdzfxoTrdxjbgxFPa93HDSVPuOQe0lKxSz2-WSeX6gv0bHBjhfOH_Qx9-_jhevO5u_r66cvm8qoLQoml8xdEBiM8D1xKb7zruVYGyCCZDMz3RBPCgxbegyYUvBAuwDCIwJxUAwR-ht4fcufVT9CH1kZxo51LnFzZ2eyi_buS4o3d5p9WSiWpEC3gzUNAyT_WNqudYg0wji5BXqulhnMjmgXW0Nf_oLd5LamN1yip9AVlSjWKHahQcq0FhsdmKLF7p_bg1Dan9t6p3Xfx6niMxyd_DDaAH4A67-VBOfr7_7G_ASr6r6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1957861277</pqid></control><display><type>article</type><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>PubMed Central</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</creator><creatorcontrib>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</creatorcontrib><description>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O
2
delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O
2
delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-10097-4</identifier><identifier>PMID: 28852047</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38 ; 38/77 ; 631/45/475/2290 ; 692/4017 ; 82 ; 82/1 ; 82/29 ; 82/58 ; Adaptation, Physiological ; Animals ; Autophagy ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Citric Acid Cycle ; Energy demand ; Energy Metabolism ; Enzymatic activity ; Gene Expression ; Glutamine ; Hexosamines - metabolism ; High-altitude environments ; Homeostasis ; Human subjects ; Humanities and Social Sciences ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Metabolic Networks and Pathways ; Metabolism ; Models, Biological ; multidisciplinary ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; Oxygen - metabolism ; Proteome ; Proteomics ; Proteomics - methods ; Rodentia ; Rodents ; Science ; Science (multidisciplinary) ; Signal Transduction ; Skeletal muscle ; Time Factors ; Tricarboxylic acid cycle</subject><ispartof>Scientific reports, 2017-08, Vol.7 (1), p.9723-16, Article 9723</ispartof><rights>The Author(s) 2017</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</citedby><cites>FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</cites><orcidid>0000-0001-7701-728X ; 0000-0001-6140-6969 ; 0000-0002-2996-6912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1957861277/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1957861277?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28852047$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Fania, Chiara</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Viganò, Agnese</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Bravatà, Valentina</creatorcontrib><creatorcontrib>Caretti, Anna</creatorcontrib><creatorcontrib>Levett, Denny Z. H.</creatorcontrib><creatorcontrib>Grocott, Michael P. W.</creatorcontrib><creatorcontrib>Samaja, Michele</creatorcontrib><creatorcontrib>Cerretelli, Paolo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O
2
delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O
2
delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</description><subject>38</subject><subject>38/77</subject><subject>631/45/475/2290</subject><subject>692/4017</subject><subject>82</subject><subject>82/1</subject><subject>82/29</subject><subject>82/58</subject><subject>Adaptation, Physiological</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Citric Acid Cycle</subject><subject>Energy demand</subject><subject>Energy Metabolism</subject><subject>Enzymatic activity</subject><subject>Gene Expression</subject><subject>Glutamine</subject><subject>Hexosamines - metabolism</subject><subject>High-altitude environments</subject><subject>Homeostasis</subject><subject>Human subjects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolism</subject><subject>Models, Biological</subject><subject>multidisciplinary</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>Oxygen - metabolism</subject><subject>Proteome</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Rodentia</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Signal Transduction</subject><subject>Skeletal muscle</subject><subject>Time Factors</subject><subject>Tricarboxylic acid cycle</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kU1vFSEUhonR2Kb2D7gwJG7cjPJZYGPS3PiVNHFT1wSYM7fUGRhhxnr_vdze2lxNZAPhPLyckwehl5S8pYTrd1VQaXRHqOooIUZ14gk6ZUTIjnHGnh6dT9B5rbekLcmMoOY5OmFay1ZXp2i-3lzisAsj4AJ3scS0xUOuC5SKJ1icz2MM2PVuXtwSc8JLxvnXbgup8XUpMdzfxoTrdxjbgxFPa93HDSVPuOQe0lKxSz2-WSeX6gv0bHBjhfOH_Qx9-_jhevO5u_r66cvm8qoLQoml8xdEBiM8D1xKb7zruVYGyCCZDMz3RBPCgxbegyYUvBAuwDCIwJxUAwR-ht4fcufVT9CH1kZxo51LnFzZ2eyi_buS4o3d5p9WSiWpEC3gzUNAyT_WNqudYg0wji5BXqulhnMjmgXW0Nf_oLd5LamN1yip9AVlSjWKHahQcq0FhsdmKLF7p_bg1Dan9t6p3Xfx6niMxyd_DDaAH4A67-VBOfr7_7G_ASr6r6g</recordid><startdate>20170829</startdate><enddate>20170829</enddate><creator>Capitanio, Daniele</creator><creator>Fania, Chiara</creator><creator>Torretta, Enrica</creator><creator>Viganò, Agnese</creator><creator>Moriggi, Manuela</creator><creator>Bravatà, Valentina</creator><creator>Caretti, Anna</creator><creator>Levett, Denny Z. H.</creator><creator>Grocott, Michael P. W.</creator><creator>Samaja, Michele</creator><creator>Cerretelli, Paolo</creator><creator>Gelfi, Cecilia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0001-6140-6969</orcidid><orcidid>https://orcid.org/0000-0002-2996-6912</orcidid></search><sort><creationdate>20170829</creationdate><title>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</title><author>Capitanio, Daniele ; Fania, Chiara ; Torretta, Enrica ; Viganò, Agnese ; Moriggi, Manuela ; Bravatà, Valentina ; Caretti, Anna ; Levett, Denny Z. H. ; Grocott, Michael P. W. ; Samaja, Michele ; Cerretelli, Paolo ; Gelfi, Cecilia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>38</topic><topic>38/77</topic><topic>631/45/475/2290</topic><topic>692/4017</topic><topic>82</topic><topic>82/1</topic><topic>82/29</topic><topic>82/58</topic><topic>Adaptation, Physiological</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Citric Acid Cycle</topic><topic>Energy demand</topic><topic>Energy Metabolism</topic><topic>Enzymatic activity</topic><topic>Gene Expression</topic><topic>Glutamine</topic><topic>Hexosamines - metabolism</topic><topic>High-altitude environments</topic><topic>Homeostasis</topic><topic>Human subjects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolism</topic><topic>Models, Biological</topic><topic>multidisciplinary</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>Oxygen - metabolism</topic><topic>Proteome</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Rodentia</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Signal Transduction</topic><topic>Skeletal muscle</topic><topic>Time Factors</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capitanio, Daniele</creatorcontrib><creatorcontrib>Fania, Chiara</creatorcontrib><creatorcontrib>Torretta, Enrica</creatorcontrib><creatorcontrib>Viganò, Agnese</creatorcontrib><creatorcontrib>Moriggi, Manuela</creatorcontrib><creatorcontrib>Bravatà, Valentina</creatorcontrib><creatorcontrib>Caretti, Anna</creatorcontrib><creatorcontrib>Levett, Denny Z. H.</creatorcontrib><creatorcontrib>Grocott, Michael P. W.</creatorcontrib><creatorcontrib>Samaja, Michele</creatorcontrib><creatorcontrib>Cerretelli, Paolo</creatorcontrib><creatorcontrib>Gelfi, Cecilia</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capitanio, Daniele</au><au>Fania, Chiara</au><au>Torretta, Enrica</au><au>Viganò, Agnese</au><au>Moriggi, Manuela</au><au>Bravatà, Valentina</au><au>Caretti, Anna</au><au>Levett, Denny Z. H.</au><au>Grocott, Michael P. W.</au><au>Samaja, Michele</au><au>Cerretelli, Paolo</au><au>Gelfi, Cecilia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-08-29</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>9723</spage><epage>16</epage><pages>9723-16</pages><artnum>9723</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In mammals, hypoxic stress management is under the control of the Hypoxia Inducible Factors, whose activity depends on the stabilization of their labile α subunit. In particular, the skeletal muscle appears to be able to react to changes in substrates and O
2
delivery by tuning its metabolism. The present study provides a comprehensive overview of skeletal muscle metabolic adaptation to hypoxia in mice and in human subjects exposed for 7/9 and 19 days to high altitude levels. The investigation was carried out combining proteomics, qRT-PCR mRNA transcripts analysis, and enzyme activities assessment in rodents, and protein detection by antigen antibody reactions in humans and rodents. Results indicate that the skeletal muscle react to a decreased O
2
delivery by rewiring the TCA cycle. The first TCA rewiring occurs in mice in 2-day hypoxia and is mediated by cytosolic malate whereas in 10-day hypoxia the rewiring is mediated by Idh1 and Fasn, supported by glutamine and HIF-2α increments. The combination of these specific anaplerotic steps can support energy demand despite HIFs degradation. These results were confirmed in human subjects, demonstrating that the TCA double rewiring represents an essential factor for the maintenance of muscle homeostasis during adaptation to hypoxia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28852047</pmid><doi>10.1038/s41598-017-10097-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7701-728X</orcidid><orcidid>https://orcid.org/0000-0001-6140-6969</orcidid><orcidid>https://orcid.org/0000-0002-2996-6912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2017-08, Vol.7 (1), p.9723-16, Article 9723 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575144 |
source | Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); PubMed Central; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 38 38/77 631/45/475/2290 692/4017 82 82/1 82/29 82/58 Adaptation, Physiological Animals Autophagy Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Citric Acid Cycle Energy demand Energy Metabolism Enzymatic activity Gene Expression Glutamine Hexosamines - metabolism High-altitude environments Homeostasis Human subjects Humanities and Social Sciences Humans Hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - genetics Hypoxia-Inducible Factor 1, alpha Subunit - metabolism Metabolic Networks and Pathways Metabolism Models, Biological multidisciplinary Muscle, Skeletal - metabolism Musculoskeletal system Oxygen - metabolism Proteome Proteomics Proteomics - methods Rodentia Rodents Science Science (multidisciplinary) Signal Transduction Skeletal muscle Time Factors Tricarboxylic acid cycle |
title | TCA cycle rewiring fosters metabolic adaptation to oxygen restriction in skeletal muscle from rodents and humans |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A47%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TCA%20cycle%20rewiring%20fosters%20metabolic%20adaptation%20to%20oxygen%20restriction%20in%20skeletal%20muscle%20from%20rodents%20and%20humans&rft.jtitle=Scientific%20reports&rft.au=Capitanio,%20Daniele&rft.date=2017-08-29&rft.volume=7&rft.issue=1&rft.spage=9723&rft.epage=16&rft.pages=9723-16&rft.artnum=9723&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-10097-4&rft_dat=%3Cproquest_pubme%3E1957861277%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c474t-b605c94b3c355b9bad3879e0f525c2bd08003c84bbe801eb44aceff4c2a57fec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1957861277&rft_id=info:pmid/28852047&rfr_iscdi=true |