Loading…
An on/off Berry phase switch in circular graphene resonators
The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, w...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2017-05, Vol.356 (6340), p.845-849 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3 |
---|---|
cites | cdi_FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3 |
container_end_page | 849 |
container_issue | 6340 |
container_start_page | 845 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 356 |
creator | Ghahari, Fereshte Walkup, Daniel Gutiérrez, Christopher Rodriguez-Nieva, Joaquin F. Zhao, Yue Wyrick, Jonathan Natterer, Fabian D. Cullen, William G. Watanabe, Kenji Taniguchi, Takashi Levitov, Leonid S. Zhitenev, Nikolai B. Stroscio, Joseph A. |
description | The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase–induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications. |
doi_str_mv | 10.1126/science.aal0212 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26399095</jstor_id><sourcerecordid>26399095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EokvhzAkUwaWXdD3-SiwhpFIVWqkSFzhb7uykySprL3YC6n-PV7uUlgsnH97PzzPvmbHXwE8BhFlmHCggnXo_cgHiCVsAt7q2gsunbMG5NHXLG33EXuS85rxoVj5nR6LVygiABftwFqoYlrHrqk-U0l217X2mKv8aJuyrIVQ4JJxHn6rb5Lc9BaoS5Rj8FFN-yZ51fsz06nAes--fL76dX9bXX79cnZ9d16iNnWrZqZW2LSJ1umnU6qYViKANNC1qVEBApvWNtNBarSzxRkphJWrwXDUe5TH7uPfdzjcbWiGFKfnRbdOw8enORT-4x0oYencbfzqtG6O0Kgbv9gYxT4MroU2EPcYQCCcHykhhTIFODq-k-GOmPLnNkJHG0QeKc3ZgQUuhbBnt_yiXUFZud-j7f9B1nFMoce0ooaURfDfgck9hijkn6u6XA-52TbtD0-7QdLnx9mEm9_yfagvwZg-sc-nqr26kteUfyN-PtK5G</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902536204</pqid></control><display><type>article</type><title>An on/off Berry phase switch in circular graphene resonators</title><source>American Association for the Advancement of Science</source><source>Alma/SFX Local Collection</source><creator>Ghahari, Fereshte ; Walkup, Daniel ; Gutiérrez, Christopher ; Rodriguez-Nieva, Joaquin F. ; Zhao, Yue ; Wyrick, Jonathan ; Natterer, Fabian D. ; Cullen, William G. ; Watanabe, Kenji ; Taniguchi, Takashi ; Levitov, Leonid S. ; Zhitenev, Nikolai B. ; Stroscio, Joseph A.</creator><creatorcontrib>Ghahari, Fereshte ; Walkup, Daniel ; Gutiérrez, Christopher ; Rodriguez-Nieva, Joaquin F. ; Zhao, Yue ; Wyrick, Jonathan ; Natterer, Fabian D. ; Cullen, William G. ; Watanabe, Kenji ; Taniguchi, Takashi ; Levitov, Leonid S. ; Zhitenev, Nikolai B. ; Stroscio, Joseph A. ; National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)</creatorcontrib><description>The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase–induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aal0212</identifier><identifier>PMID: 28546211</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Angular momentum ; ATOMIC AND MOLECULAR PHYSICS ; Circularity ; Conductivity ; Electronic structure ; Electrons ; Fermions ; Graphene ; Magnetic fields ; Optoelectronic devices ; P-n junctions ; Phase shift ; Quantum mechanics ; Resonators ; S parameters ; Scanning ; Spectroscopy ; Switches ; Turning behavior ; Wave functions</subject><ispartof>Science (American Association for the Advancement of Science), 2017-05, Vol.356 (6340), p.845-849</ispartof><rights>Copyright © 2017 by the American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science.</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3</citedby><cites>FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3</cites><orcidid>0000-0002-7477-6341 ; 0000-0002-3873-497X ; 0000-0001-5579-3456 ; 0000-0001-9604-9324 ; 0000-0003-3217-9562 ; 0000-0002-2488-5988 ; 0000-0003-3701-8119 ; 0000-0002-8307-6419 ; 0000-0002-5441-2866 ; 0000-0002-3023-396X ; 0000000274776341 ; 000000023023396X ; 0000000283076419 ; 000000023873497X ; 0000000155793456 ; 0000000337018119 ; 0000000254412866 ; 0000000196049324 ; 0000000332179562 ; 0000000224885988</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2884,2885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28546211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1463266$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghahari, Fereshte</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Gutiérrez, Christopher</creatorcontrib><creatorcontrib>Rodriguez-Nieva, Joaquin F.</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wyrick, Jonathan</creatorcontrib><creatorcontrib>Natterer, Fabian D.</creatorcontrib><creatorcontrib>Cullen, William G.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Levitov, Leonid S.</creatorcontrib><creatorcontrib>Zhitenev, Nikolai B.</creatorcontrib><creatorcontrib>Stroscio, Joseph A.</creatorcontrib><creatorcontrib>National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)</creatorcontrib><title>An on/off Berry phase switch in circular graphene resonators</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase–induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.</description><subject>Angular momentum</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>Circularity</subject><subject>Conductivity</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Fermions</subject><subject>Graphene</subject><subject>Magnetic fields</subject><subject>Optoelectronic devices</subject><subject>P-n junctions</subject><subject>Phase shift</subject><subject>Quantum mechanics</subject><subject>Resonators</subject><subject>S parameters</subject><subject>Scanning</subject><subject>Spectroscopy</subject><subject>Switches</subject><subject>Turning behavior</subject><subject>Wave functions</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFks1v1DAQxS0EokvhzAkUwaWXdD3-SiwhpFIVWqkSFzhb7uykySprL3YC6n-PV7uUlgsnH97PzzPvmbHXwE8BhFlmHCggnXo_cgHiCVsAt7q2gsunbMG5NHXLG33EXuS85rxoVj5nR6LVygiABftwFqoYlrHrqk-U0l217X2mKv8aJuyrIVQ4JJxHn6rb5Lc9BaoS5Rj8FFN-yZ51fsz06nAes--fL76dX9bXX79cnZ9d16iNnWrZqZW2LSJ1umnU6qYViKANNC1qVEBApvWNtNBarSzxRkphJWrwXDUe5TH7uPfdzjcbWiGFKfnRbdOw8enORT-4x0oYencbfzqtG6O0Kgbv9gYxT4MroU2EPcYQCCcHykhhTIFODq-k-GOmPLnNkJHG0QeKc3ZgQUuhbBnt_yiXUFZud-j7f9B1nFMoce0ooaURfDfgck9hijkn6u6XA-52TbtD0-7QdLnx9mEm9_yfagvwZg-sc-nqr26kteUfyN-PtK5G</recordid><startdate>20170526</startdate><enddate>20170526</enddate><creator>Ghahari, Fereshte</creator><creator>Walkup, Daniel</creator><creator>Gutiérrez, Christopher</creator><creator>Rodriguez-Nieva, Joaquin F.</creator><creator>Zhao, Yue</creator><creator>Wyrick, Jonathan</creator><creator>Natterer, Fabian D.</creator><creator>Cullen, William G.</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Levitov, Leonid S.</creator><creator>Zhitenev, Nikolai B.</creator><creator>Stroscio, Joseph A.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7477-6341</orcidid><orcidid>https://orcid.org/0000-0002-3873-497X</orcidid><orcidid>https://orcid.org/0000-0001-5579-3456</orcidid><orcidid>https://orcid.org/0000-0001-9604-9324</orcidid><orcidid>https://orcid.org/0000-0003-3217-9562</orcidid><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-8307-6419</orcidid><orcidid>https://orcid.org/0000-0002-5441-2866</orcidid><orcidid>https://orcid.org/0000-0002-3023-396X</orcidid><orcidid>https://orcid.org/0000000274776341</orcidid><orcidid>https://orcid.org/000000023023396X</orcidid><orcidid>https://orcid.org/0000000283076419</orcidid><orcidid>https://orcid.org/000000023873497X</orcidid><orcidid>https://orcid.org/0000000155793456</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000254412866</orcidid><orcidid>https://orcid.org/0000000196049324</orcidid><orcidid>https://orcid.org/0000000332179562</orcidid><orcidid>https://orcid.org/0000000224885988</orcidid></search><sort><creationdate>20170526</creationdate><title>An on/off Berry phase switch in circular graphene resonators</title><author>Ghahari, Fereshte ; Walkup, Daniel ; Gutiérrez, Christopher ; Rodriguez-Nieva, Joaquin F. ; Zhao, Yue ; Wyrick, Jonathan ; Natterer, Fabian D. ; Cullen, William G. ; Watanabe, Kenji ; Taniguchi, Takashi ; Levitov, Leonid S. ; Zhitenev, Nikolai B. ; Stroscio, Joseph A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Angular momentum</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>Circularity</topic><topic>Conductivity</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Fermions</topic><topic>Graphene</topic><topic>Magnetic fields</topic><topic>Optoelectronic devices</topic><topic>P-n junctions</topic><topic>Phase shift</topic><topic>Quantum mechanics</topic><topic>Resonators</topic><topic>S parameters</topic><topic>Scanning</topic><topic>Spectroscopy</topic><topic>Switches</topic><topic>Turning behavior</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghahari, Fereshte</creatorcontrib><creatorcontrib>Walkup, Daniel</creatorcontrib><creatorcontrib>Gutiérrez, Christopher</creatorcontrib><creatorcontrib>Rodriguez-Nieva, Joaquin F.</creatorcontrib><creatorcontrib>Zhao, Yue</creatorcontrib><creatorcontrib>Wyrick, Jonathan</creatorcontrib><creatorcontrib>Natterer, Fabian D.</creatorcontrib><creatorcontrib>Cullen, William G.</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Levitov, Leonid S.</creatorcontrib><creatorcontrib>Zhitenev, Nikolai B.</creatorcontrib><creatorcontrib>Stroscio, Joseph A.</creatorcontrib><creatorcontrib>National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghahari, Fereshte</au><au>Walkup, Daniel</au><au>Gutiérrez, Christopher</au><au>Rodriguez-Nieva, Joaquin F.</au><au>Zhao, Yue</au><au>Wyrick, Jonathan</au><au>Natterer, Fabian D.</au><au>Cullen, William G.</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Levitov, Leonid S.</au><au>Zhitenev, Nikolai B.</au><au>Stroscio, Joseph A.</au><aucorp>National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An on/off Berry phase switch in circular graphene resonators</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-05-26</date><risdate>2017</risdate><volume>356</volume><issue>6340</issue><spage>845</spage><epage>849</epage><pages>845-849</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>The phase of a quantum state may not return to its original value after the system’s parameters cycle around a closed path; instead, the wave function may acquire a measurable phase difference called the Berry phase. Berry phases typically have been accessed through interference experiments. Here, we demonstrate an unusual Berry phase–induced spectroscopic feature: a sudden and large increase in the energy of angular-momentum states in circular graphene p-n junction resonators when a relatively small critical magnetic field is reached. This behavior results from turning on a π Berry phase associated with the topological properties of Dirac fermions in graphene. The Berry phase can be switched on and off with small magnetic field changes on the order of 10 millitesla, potentially enabling a variety of optoelectronic graphene device applications.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28546211</pmid><doi>10.1126/science.aal0212</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7477-6341</orcidid><orcidid>https://orcid.org/0000-0002-3873-497X</orcidid><orcidid>https://orcid.org/0000-0001-5579-3456</orcidid><orcidid>https://orcid.org/0000-0001-9604-9324</orcidid><orcidid>https://orcid.org/0000-0003-3217-9562</orcidid><orcidid>https://orcid.org/0000-0002-2488-5988</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0002-8307-6419</orcidid><orcidid>https://orcid.org/0000-0002-5441-2866</orcidid><orcidid>https://orcid.org/0000-0002-3023-396X</orcidid><orcidid>https://orcid.org/0000000274776341</orcidid><orcidid>https://orcid.org/000000023023396X</orcidid><orcidid>https://orcid.org/0000000283076419</orcidid><orcidid>https://orcid.org/000000023873497X</orcidid><orcidid>https://orcid.org/0000000155793456</orcidid><orcidid>https://orcid.org/0000000337018119</orcidid><orcidid>https://orcid.org/0000000254412866</orcidid><orcidid>https://orcid.org/0000000196049324</orcidid><orcidid>https://orcid.org/0000000332179562</orcidid><orcidid>https://orcid.org/0000000224885988</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-05, Vol.356 (6340), p.845-849 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5576454 |
source | American Association for the Advancement of Science; Alma/SFX Local Collection |
subjects | Angular momentum ATOMIC AND MOLECULAR PHYSICS Circularity Conductivity Electronic structure Electrons Fermions Graphene Magnetic fields Optoelectronic devices P-n junctions Phase shift Quantum mechanics Resonators S parameters Scanning Spectroscopy Switches Turning behavior Wave functions |
title | An on/off Berry phase switch in circular graphene resonators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T19%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20on/off%20Berry%20phase%20switch%20in%20circular%20graphene%20resonators&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ghahari,%20Fereshte&rft.aucorp=National%20Inst.%20of%20Standards%20and%20Technology%20(NIST),%20Gaithersburg,%20MD%20(United%20States)&rft.date=2017-05-26&rft.volume=356&rft.issue=6340&rft.spage=845&rft.epage=849&rft.pages=845-849&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aal0212&rft_dat=%3Cjstor_pubme%3E26399095%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c569t-3f4d598ccef5774db82cc156178c5c41e1e68a739189549e0733293c51a047ac3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1902536204&rft_id=info:pmid/28546211&rft_jstor_id=26399095&rfr_iscdi=true |