Loading…

Optical spin noise spectra of Rb atomic gas with homogeneous and inhomogeneous broadening

We study the optical spin noise spectra of Rb atomic gas with different broadening mechanisms. The first is homogeneous broadening using 250 Torr nitrogen buffer gas, while the other mechanism is inhomogeneous broadening via the Doppler effect without buffer gas. Spin noise signals are measured by t...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-08, Vol.7 (1), p.10238-10238, Article 10238
Main Authors: Ma, Jian, Shi, Ping, Qian, Xuan, Shang, Yaxuan, Ji, Yang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the optical spin noise spectra of Rb atomic gas with different broadening mechanisms. The first is homogeneous broadening using 250 Torr nitrogen buffer gas, while the other mechanism is inhomogeneous broadening via the Doppler effect without buffer gas. Spin noise signals are measured by the typical spin noise spectroscopy geometry (single-pass geometry) and the saturated absorption spectroscopy geometry (double-pass geometry). In the homogeneously broadened system, the line shape of the optical spin noise spectra shows a pronounced dip that vanishes at the center of the band in both geometries. In the inhomogeneously broadened system, however, a peak in the single-pass geometry and a dip in the double-pass geometry at the band center are observed. The difference between the optical spin noise spectra from these two systems arises from their different level-broadening mechanisms.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-08759-4