Loading…

Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics

This study investigated the relationship between epidermal growth factor receptor ( EGFR ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent s...

Full description

Saved in:
Bibliographic Details
Published in:Oncotarget 2017-08, Vol.8 (32), p.52792-52801
Main Authors: Minamimoto, Ryogo, Jamali, Mehran, Gevaert, Olivier, Echegaray, Sebastian, Khuong, Amanda, Hoang, Chuong D., Shrager, Joseph B., Plevritis, Sylvia K., Rubin, Daniel L., Leung, Ann N., Napel, Sandy, Quon, Andrew
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3
cites cdi_FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3
container_end_page 52801
container_issue 32
container_start_page 52792
container_title Oncotarget
container_volume 8
creator Minamimoto, Ryogo
Jamali, Mehran
Gevaert, Olivier
Echegaray, Sebastian
Khuong, Amanda
Hoang, Chuong D.
Shrager, Joseph B.
Plevritis, Sylvia K.
Rubin, Daniel L.
Leung, Ann N.
Napel, Sandy
Quon, Andrew
description This study investigated the relationship between epidermal growth factor receptor ( EGFR ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing for the EGFR and KRAS gene mutations. Patient and lesion characteristics, including smoking habits and FDG uptake parameters, were correlated to each gene mutation. Never-smoker ( P < 0.001) or low pack-year smoking history ( p = 0.002) and female gender ( p = 0.047) were predictive factors for the presence of the EGFR mutations. Being a current or former smoker was a predictive factor for the KRAS mutations ( p = 0.018). The maximum standardized uptake value (SUV max ) of FDG uptake in lung lesions was a predictive factor of the EGFR mutations ( p = 0.029), while metabolic tumor volume and total lesion glycolysis were not predictive. Amongst several tumor heterogeneity metrics included in our analysis, inverse coefficient of variation (1/COV) was a predictive factor ( p < 0.02) of EGFR mutations status, independent of metabolic tumor diameter. Multivariate analysis showed that being a never-smoker was the most significant factor ( p < 0.001) for the EGFR mutations in lung cancer overall. The tumor heterogeneity metric 1/COV and SUV max were both predictive for the EGFR mutations in NSCLC in a univariate analysis. Overall, smoking status was the most significant factor for the presence of the EGFR and KRAS mutations in lung cancer.
doi_str_mv 10.18632/oncotarget.17782
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5581070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1937519896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3</originalsourceid><addsrcrecordid>eNpVUU1P3DAQtRBVQZQf0JuPXAIeZ-M4FyS07G6rIoHo9mzNOuPFKLHBTlbi3zcsiJY5zIfmvTcaPca-gzgHrUp5EYONA6YtDedQ11oesGNoZk0hq6o8_K8_Yqc5P4opqtkEa76yI6m1njhwzLq7RK23g4-BR8cXq-U9x9DyX_dXv3k_Drjf-MBDDEXuseu4pSl1Y9hyi8FS4mP20_A8Yhj8K2FHHPSSL69Xxd1ifTFf856G5G3-xr447DKdvtcT9me5WM9_FDe3q5_zq5vCQq1FUQtR0kZtnJXoZgDKzVpUrbZAbYuSgEhrAdo2mkihk4hKVlpJpwSBo_KEXb7pPo2bnlpLYUjYmafke0wvJqI3nzfBP5ht3Jmq0iBqMQmcvQuk-DxSHkzv8-vfGCiO2UBT1hU0ulETFN6gNsWcE7mPMyDM3ijzzyizN6r8C5doiK4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1937519896</pqid></control><display><type>article</type><title>Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics</title><source>PubMed Central</source><creator>Minamimoto, Ryogo ; Jamali, Mehran ; Gevaert, Olivier ; Echegaray, Sebastian ; Khuong, Amanda ; Hoang, Chuong D. ; Shrager, Joseph B. ; Plevritis, Sylvia K. ; Rubin, Daniel L. ; Leung, Ann N. ; Napel, Sandy ; Quon, Andrew</creator><creatorcontrib>Minamimoto, Ryogo ; Jamali, Mehran ; Gevaert, Olivier ; Echegaray, Sebastian ; Khuong, Amanda ; Hoang, Chuong D. ; Shrager, Joseph B. ; Plevritis, Sylvia K. ; Rubin, Daniel L. ; Leung, Ann N. ; Napel, Sandy ; Quon, Andrew</creatorcontrib><description>This study investigated the relationship between epidermal growth factor receptor ( EGFR ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing for the EGFR and KRAS gene mutations. Patient and lesion characteristics, including smoking habits and FDG uptake parameters, were correlated to each gene mutation. Never-smoker ( P &lt; 0.001) or low pack-year smoking history ( p = 0.002) and female gender ( p = 0.047) were predictive factors for the presence of the EGFR mutations. Being a current or former smoker was a predictive factor for the KRAS mutations ( p = 0.018). The maximum standardized uptake value (SUV max ) of FDG uptake in lung lesions was a predictive factor of the EGFR mutations ( p = 0.029), while metabolic tumor volume and total lesion glycolysis were not predictive. Amongst several tumor heterogeneity metrics included in our analysis, inverse coefficient of variation (1/COV) was a predictive factor ( p &lt; 0.02) of EGFR mutations status, independent of metabolic tumor diameter. Multivariate analysis showed that being a never-smoker was the most significant factor ( p &lt; 0.001) for the EGFR mutations in lung cancer overall. The tumor heterogeneity metric 1/COV and SUV max were both predictive for the EGFR mutations in NSCLC in a univariate analysis. Overall, smoking status was the most significant factor for the presence of the EGFR and KRAS mutations in lung cancer.</description><identifier>ISSN: 1949-2553</identifier><identifier>EISSN: 1949-2553</identifier><identifier>DOI: 10.18632/oncotarget.17782</identifier><identifier>PMID: 28881771</identifier><language>eng</language><publisher>Impact Journals LLC</publisher><subject>Research Paper</subject><ispartof>Oncotarget, 2017-08, Vol.8 (32), p.52792-52801</ispartof><rights>Copyright: © 2017 Minamimoto et al. 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3</citedby><cites>FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581070/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5581070/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Minamimoto, Ryogo</creatorcontrib><creatorcontrib>Jamali, Mehran</creatorcontrib><creatorcontrib>Gevaert, Olivier</creatorcontrib><creatorcontrib>Echegaray, Sebastian</creatorcontrib><creatorcontrib>Khuong, Amanda</creatorcontrib><creatorcontrib>Hoang, Chuong D.</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><creatorcontrib>Plevritis, Sylvia K.</creatorcontrib><creatorcontrib>Rubin, Daniel L.</creatorcontrib><creatorcontrib>Leung, Ann N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Quon, Andrew</creatorcontrib><title>Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics</title><title>Oncotarget</title><description>This study investigated the relationship between epidermal growth factor receptor ( EGFR ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing for the EGFR and KRAS gene mutations. Patient and lesion characteristics, including smoking habits and FDG uptake parameters, were correlated to each gene mutation. Never-smoker ( P &lt; 0.001) or low pack-year smoking history ( p = 0.002) and female gender ( p = 0.047) were predictive factors for the presence of the EGFR mutations. Being a current or former smoker was a predictive factor for the KRAS mutations ( p = 0.018). The maximum standardized uptake value (SUV max ) of FDG uptake in lung lesions was a predictive factor of the EGFR mutations ( p = 0.029), while metabolic tumor volume and total lesion glycolysis were not predictive. Amongst several tumor heterogeneity metrics included in our analysis, inverse coefficient of variation (1/COV) was a predictive factor ( p &lt; 0.02) of EGFR mutations status, independent of metabolic tumor diameter. Multivariate analysis showed that being a never-smoker was the most significant factor ( p &lt; 0.001) for the EGFR mutations in lung cancer overall. The tumor heterogeneity metric 1/COV and SUV max were both predictive for the EGFR mutations in NSCLC in a univariate analysis. Overall, smoking status was the most significant factor for the presence of the EGFR and KRAS mutations in lung cancer.</description><subject>Research Paper</subject><issn>1949-2553</issn><issn>1949-2553</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpVUU1P3DAQtRBVQZQf0JuPXAIeZ-M4FyS07G6rIoHo9mzNOuPFKLHBTlbi3zcsiJY5zIfmvTcaPca-gzgHrUp5EYONA6YtDedQ11oesGNoZk0hq6o8_K8_Yqc5P4opqtkEa76yI6m1njhwzLq7RK23g4-BR8cXq-U9x9DyX_dXv3k_Drjf-MBDDEXuseu4pSl1Y9hyi8FS4mP20_A8Yhj8K2FHHPSSL69Xxd1ifTFf856G5G3-xr447DKdvtcT9me5WM9_FDe3q5_zq5vCQq1FUQtR0kZtnJXoZgDKzVpUrbZAbYuSgEhrAdo2mkihk4hKVlpJpwSBo_KEXb7pPo2bnlpLYUjYmafke0wvJqI3nzfBP5ht3Jmq0iBqMQmcvQuk-DxSHkzv8-vfGCiO2UBT1hU0ulETFN6gNsWcE7mPMyDM3ijzzyizN6r8C5doiK4</recordid><startdate>20170808</startdate><enddate>20170808</enddate><creator>Minamimoto, Ryogo</creator><creator>Jamali, Mehran</creator><creator>Gevaert, Olivier</creator><creator>Echegaray, Sebastian</creator><creator>Khuong, Amanda</creator><creator>Hoang, Chuong D.</creator><creator>Shrager, Joseph B.</creator><creator>Plevritis, Sylvia K.</creator><creator>Rubin, Daniel L.</creator><creator>Leung, Ann N.</creator><creator>Napel, Sandy</creator><creator>Quon, Andrew</creator><general>Impact Journals LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170808</creationdate><title>Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics</title><author>Minamimoto, Ryogo ; Jamali, Mehran ; Gevaert, Olivier ; Echegaray, Sebastian ; Khuong, Amanda ; Hoang, Chuong D. ; Shrager, Joseph B. ; Plevritis, Sylvia K. ; Rubin, Daniel L. ; Leung, Ann N. ; Napel, Sandy ; Quon, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Research Paper</topic><toplevel>online_resources</toplevel><creatorcontrib>Minamimoto, Ryogo</creatorcontrib><creatorcontrib>Jamali, Mehran</creatorcontrib><creatorcontrib>Gevaert, Olivier</creatorcontrib><creatorcontrib>Echegaray, Sebastian</creatorcontrib><creatorcontrib>Khuong, Amanda</creatorcontrib><creatorcontrib>Hoang, Chuong D.</creatorcontrib><creatorcontrib>Shrager, Joseph B.</creatorcontrib><creatorcontrib>Plevritis, Sylvia K.</creatorcontrib><creatorcontrib>Rubin, Daniel L.</creatorcontrib><creatorcontrib>Leung, Ann N.</creatorcontrib><creatorcontrib>Napel, Sandy</creatorcontrib><creatorcontrib>Quon, Andrew</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oncotarget</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minamimoto, Ryogo</au><au>Jamali, Mehran</au><au>Gevaert, Olivier</au><au>Echegaray, Sebastian</au><au>Khuong, Amanda</au><au>Hoang, Chuong D.</au><au>Shrager, Joseph B.</au><au>Plevritis, Sylvia K.</au><au>Rubin, Daniel L.</au><au>Leung, Ann N.</au><au>Napel, Sandy</au><au>Quon, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics</atitle><jtitle>Oncotarget</jtitle><date>2017-08-08</date><risdate>2017</risdate><volume>8</volume><issue>32</issue><spage>52792</spage><epage>52801</epage><pages>52792-52801</pages><issn>1949-2553</issn><eissn>1949-2553</eissn><abstract>This study investigated the relationship between epidermal growth factor receptor ( EGFR ) and Kirsten rat sarcoma viral oncogene homolog ( KRAS ) mutations in non-small-cell lung cancer (NSCLC) and quantitative FDG-PET/CT parameters including tumor heterogeneity. 131 patients with NSCLC underwent staging FDG-PET/CT followed by tumor resection and histopathological analysis that included testing for the EGFR and KRAS gene mutations. Patient and lesion characteristics, including smoking habits and FDG uptake parameters, were correlated to each gene mutation. Never-smoker ( P &lt; 0.001) or low pack-year smoking history ( p = 0.002) and female gender ( p = 0.047) were predictive factors for the presence of the EGFR mutations. Being a current or former smoker was a predictive factor for the KRAS mutations ( p = 0.018). The maximum standardized uptake value (SUV max ) of FDG uptake in lung lesions was a predictive factor of the EGFR mutations ( p = 0.029), while metabolic tumor volume and total lesion glycolysis were not predictive. Amongst several tumor heterogeneity metrics included in our analysis, inverse coefficient of variation (1/COV) was a predictive factor ( p &lt; 0.02) of EGFR mutations status, independent of metabolic tumor diameter. Multivariate analysis showed that being a never-smoker was the most significant factor ( p &lt; 0.001) for the EGFR mutations in lung cancer overall. The tumor heterogeneity metric 1/COV and SUV max were both predictive for the EGFR mutations in NSCLC in a univariate analysis. Overall, smoking status was the most significant factor for the presence of the EGFR and KRAS mutations in lung cancer.</abstract><pub>Impact Journals LLC</pub><pmid>28881771</pmid><doi>10.18632/oncotarget.17782</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-2553
ispartof Oncotarget, 2017-08, Vol.8 (32), p.52792-52801
issn 1949-2553
1949-2553
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5581070
source PubMed Central
subjects Research Paper
title Prediction of EGFR and KRAS mutation in non-small cell lung cancer using quantitative 18F FDG-PET/CT metrics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A51%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20EGFR%20and%20KRAS%20mutation%20in%20non-small%20cell%20lung%20cancer%20using%20quantitative%2018F%20FDG-PET/CT%20metrics&rft.jtitle=Oncotarget&rft.au=Minamimoto,%20Ryogo&rft.date=2017-08-08&rft.volume=8&rft.issue=32&rft.spage=52792&rft.epage=52801&rft.pages=52792-52801&rft.issn=1949-2553&rft.eissn=1949-2553&rft_id=info:doi/10.18632/oncotarget.17782&rft_dat=%3Cproquest_pubme%3E1937519896%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1780-7003eb6bfc2af4116f4da6d8c1edda2e1ee88018c98ee6af2aa625862f60e1fe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1937519896&rft_id=info:pmid/28881771&rfr_iscdi=true