Loading…
Creation of a multi-segmented optical needle with prescribed length and spacing using the radiation pattern from a sectional-uniform line source
This paper presents a method to generate a multi-segmented optical needle with a strong longitudinally polarized field, uniform intensity along the optical axis, and a transverse size (~0.36λ). The length of each segment in the optical needle and the spacing between adjacent segments are controllabl...
Saved in:
Published in: | Scientific reports 2017-09, Vol.7 (1), p.10708-5, Article 10708 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a method to generate a multi-segmented optical needle with a strong longitudinally polarized field, uniform intensity along the optical axis, and a transverse size (~0.36λ). The length of each segment in the optical needle and the spacing between adjacent segments are controllable by reversing and focusing the radiation pattern from a sectional-uniform line source antenna to the focal volume of a 4Pi focusing system. By solving the inverse problem, we can obtain the required incident field distribution at the pupil plane to create the multi-segmented optical needle. Numerical examples demonstrate that a multi-segmented optical needle with variable focal depth, adjustable interval, narrow lateral width, homogeneous intensity, and high longitudinal polarization purity can be formed using the proposed approach. The length of each needle segment is approximately equal to the length of the corresponding sectional uniform line source. The multi-segmented optical needle may be employed in applications such as multi-particle acceleration, multi-particle trapping and manipulation, laser machining, and laser material processing. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-11501-9 |