Loading…

Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells

Lentiviral vector (LV)-based hematopoietic stem cell (HSC) gene therapy is becoming a promising clinical strategy for the treatment of genetic blood diseases. However, the current approach of modifying 1 × 108 to 1 × 109 CD34+ cells per patient requires large amounts of LV, which is expensive and te...

Full description

Saved in:
Bibliographic Details
Published in:Molecular therapy 2017-09, Vol.25 (9), p.2163-2175
Main Authors: Masiuk, Katelyn E., Brown, Devin, Laborada, Jennifer, Hollis, Roger P., Urbinati, Fabrizia, Kohn, Donald B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3
cites cdi_FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3
container_end_page 2175
container_issue 9
container_start_page 2163
container_title Molecular therapy
container_volume 25
creator Masiuk, Katelyn E.
Brown, Devin
Laborada, Jennifer
Hollis, Roger P.
Urbinati, Fabrizia
Kohn, Donald B.
description Lentiviral vector (LV)-based hematopoietic stem cell (HSC) gene therapy is becoming a promising clinical strategy for the treatment of genetic blood diseases. However, the current approach of modifying 1 × 108 to 1 × 109 CD34+ cells per patient requires large amounts of LV, which is expensive and technically challenging to produce at clinical scale. Modification of bulk CD34+ cells uses LV inefficiently, because the majority of CD34+ cells are short-term progenitors with a limited post-transplant lifespan. Here, we utilized a clinically relevant, immunomagnetic bead (IB)-based method to purify CD34+CD38− cells from human bone marrow (BM) and mobilized peripheral blood (mPB). IB purification of CD34+CD38− cells enriched severe combined immune deficiency (SCID) repopulating cell (SRC) frequency an additional 12-fold beyond standard CD34+ purification and did not affect gene marking of long-term HSCs. Transplant of purified CD34+CD38− cells led to delayed myeloid reconstitution, which could be rescued by the addition of non-transduced CD38+ cells. Importantly, LV modification and transplantation of IB-purified CD34+CD38− cells/non-modified CD38+ cells into immune-deficient mice achieved long-term gene-marked engraftment comparable with modification of bulk CD34+ cells, while utilizing ∼7-fold less LV. Thus, we demonstrate a translatable method to improve the clinical and commercial viability of gene therapy for genetic blood cell diseases. [Display omitted] Hematopoietic stem cell (HSC) gene therapy is a promising clinical strategy to treat a wide range of genetic blood diseases. Masiuk and colleagues demonstrate a clinically relevant method to improve HSC gene therapy efficiency through isolation and transplantation of highly purified HSCs prior to lentiviral (LV) transduction. Enhanced HSC enrichment allows for a 5- to 10-fold reduction in LV dose and culture scale compared with currently used methods.
doi_str_mv 10.1016/j.ymthe.2017.05.023
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1525001617302599</els_id><sourcerecordid>1915347284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3</originalsourceid><addsrcrecordid>eNp9kU9r20AQxUVpaNK0n6BQFnrpxcrsX0uHFoJx40Agh6SXXpbVamStsbTqrmTwt-86TkzTQ08zsL95O29eln2ikFOg6mqT77uxxZwBnecgc2D8TXZBJZMzACbennqqzrP3MW5SR2Wp3mXnrFCKJ5GL7NdtNwS_c_2a3GCP5LHFYIY9WTaNsw57uydjG_y0blNFsuyDs22H_Uh8Q1ZTZ3qyws6MfvAOR2fJw4gdWeB2Gz9kZ43ZRvz4XC-znz-Wj4vV7O7-5nZxfTezopiPs6oSAEVZADSFYAIF56WpDLAGa8MN44rxppJUMVGI2iC1CKUFI1FVEoqGX2bfj7rDVHVY27RcMFs9BNeZsNfeOP36pXetXvudlrIoQfEk8PVZIPjfE8ZRdy7aZMH06KeoaUklF3NWiIR--Qfd-Cn0yZ5mNHmgULIDxY-UDT7GgM1pGQr6kJ3e6Kfs9CE7DVKn7NLU5799nGZewkrAtyOA6Zo7h0HHp4iwdgHtqGvv_vvBH6HgrGA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2198010924</pqid></control><display><type>article</type><title>Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells</title><source>PubMed (Medline)</source><creator>Masiuk, Katelyn E. ; Brown, Devin ; Laborada, Jennifer ; Hollis, Roger P. ; Urbinati, Fabrizia ; Kohn, Donald B.</creator><creatorcontrib>Masiuk, Katelyn E. ; Brown, Devin ; Laborada, Jennifer ; Hollis, Roger P. ; Urbinati, Fabrizia ; Kohn, Donald B.</creatorcontrib><description>Lentiviral vector (LV)-based hematopoietic stem cell (HSC) gene therapy is becoming a promising clinical strategy for the treatment of genetic blood diseases. However, the current approach of modifying 1 × 108 to 1 × 109 CD34+ cells per patient requires large amounts of LV, which is expensive and technically challenging to produce at clinical scale. Modification of bulk CD34+ cells uses LV inefficiently, because the majority of CD34+ cells are short-term progenitors with a limited post-transplant lifespan. Here, we utilized a clinically relevant, immunomagnetic bead (IB)-based method to purify CD34+CD38− cells from human bone marrow (BM) and mobilized peripheral blood (mPB). IB purification of CD34+CD38− cells enriched severe combined immune deficiency (SCID) repopulating cell (SRC) frequency an additional 12-fold beyond standard CD34+ purification and did not affect gene marking of long-term HSCs. Transplant of purified CD34+CD38− cells led to delayed myeloid reconstitution, which could be rescued by the addition of non-transduced CD38+ cells. Importantly, LV modification and transplantation of IB-purified CD34+CD38− cells/non-modified CD38+ cells into immune-deficient mice achieved long-term gene-marked engraftment comparable with modification of bulk CD34+ cells, while utilizing ∼7-fold less LV. Thus, we demonstrate a translatable method to improve the clinical and commercial viability of gene therapy for genetic blood cell diseases. [Display omitted] Hematopoietic stem cell (HSC) gene therapy is a promising clinical strategy to treat a wide range of genetic blood diseases. Masiuk and colleagues demonstrate a clinically relevant method to improve HSC gene therapy efficiency through isolation and transplantation of highly purified HSCs prior to lentiviral (LV) transduction. Enhanced HSC enrichment allows for a 5- to 10-fold reduction in LV dose and culture scale compared with currently used methods.</description><identifier>ISSN: 1525-0016</identifier><identifier>EISSN: 1525-0024</identifier><identifier>DOI: 10.1016/j.ymthe.2017.05.023</identifier><identifier>PMID: 28663101</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ADP-ribosyl Cyclase 1 - metabolism ; Animals ; Antigens, CD34 - metabolism ; Blood ; Bone marrow ; CD34 antigen ; CD38 antigen ; Clinical trials ; Cloning ; Conflicts of interest ; Experiments ; Flow cytometry ; Gene Expression ; Gene therapy ; Gene Transfer Techniques ; Genes, Reporter ; Genetic Therapy ; Genetic Vectors - genetics ; Good Manufacturing Practice ; Graft Survival ; Hematological diseases ; Hematopoietic Stem Cell Transplantation ; Hematopoietic stem cells ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - metabolism ; Humans ; Hypothesis testing ; Immunomagnetic Separation ; Immunophenotyping ; Kinases ; lentiviral vectors ; Lentivirus - genetics ; Life span ; Mice ; Original ; Peripheral blood ; Purification ; Severe combined immunodeficiency ; Stem cell transplantation ; Stem cells ; Transduction, Genetic ; Transgenes ; Transplants &amp; implants</subject><ispartof>Molecular therapy, 2017-09, Vol.25 (9), p.2163-2175</ispartof><rights>2017 The American Society of Gene and Cell Therapy</rights><rights>Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.</rights><rights>2017. The American Society of Gene and Cell Therapy</rights><rights>2017 The American Society of Gene and Cell Therapy. 2017 The American Society of Gene and Cell Therapy</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3</citedby><cites>FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589063/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5589063/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28663101$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masiuk, Katelyn E.</creatorcontrib><creatorcontrib>Brown, Devin</creatorcontrib><creatorcontrib>Laborada, Jennifer</creatorcontrib><creatorcontrib>Hollis, Roger P.</creatorcontrib><creatorcontrib>Urbinati, Fabrizia</creatorcontrib><creatorcontrib>Kohn, Donald B.</creatorcontrib><title>Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells</title><title>Molecular therapy</title><addtitle>Mol Ther</addtitle><description>Lentiviral vector (LV)-based hematopoietic stem cell (HSC) gene therapy is becoming a promising clinical strategy for the treatment of genetic blood diseases. However, the current approach of modifying 1 × 108 to 1 × 109 CD34+ cells per patient requires large amounts of LV, which is expensive and technically challenging to produce at clinical scale. Modification of bulk CD34+ cells uses LV inefficiently, because the majority of CD34+ cells are short-term progenitors with a limited post-transplant lifespan. Here, we utilized a clinically relevant, immunomagnetic bead (IB)-based method to purify CD34+CD38− cells from human bone marrow (BM) and mobilized peripheral blood (mPB). IB purification of CD34+CD38− cells enriched severe combined immune deficiency (SCID) repopulating cell (SRC) frequency an additional 12-fold beyond standard CD34+ purification and did not affect gene marking of long-term HSCs. Transplant of purified CD34+CD38− cells led to delayed myeloid reconstitution, which could be rescued by the addition of non-transduced CD38+ cells. Importantly, LV modification and transplantation of IB-purified CD34+CD38− cells/non-modified CD38+ cells into immune-deficient mice achieved long-term gene-marked engraftment comparable with modification of bulk CD34+ cells, while utilizing ∼7-fold less LV. Thus, we demonstrate a translatable method to improve the clinical and commercial viability of gene therapy for genetic blood cell diseases. [Display omitted] Hematopoietic stem cell (HSC) gene therapy is a promising clinical strategy to treat a wide range of genetic blood diseases. Masiuk and colleagues demonstrate a clinically relevant method to improve HSC gene therapy efficiency through isolation and transplantation of highly purified HSCs prior to lentiviral (LV) transduction. Enhanced HSC enrichment allows for a 5- to 10-fold reduction in LV dose and culture scale compared with currently used methods.</description><subject>ADP-ribosyl Cyclase 1 - metabolism</subject><subject>Animals</subject><subject>Antigens, CD34 - metabolism</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>CD34 antigen</subject><subject>CD38 antigen</subject><subject>Clinical trials</subject><subject>Cloning</subject><subject>Conflicts of interest</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>Genes, Reporter</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - genetics</subject><subject>Good Manufacturing Practice</subject><subject>Graft Survival</subject><subject>Hematological diseases</subject><subject>Hematopoietic Stem Cell Transplantation</subject><subject>Hematopoietic stem cells</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - metabolism</subject><subject>Humans</subject><subject>Hypothesis testing</subject><subject>Immunomagnetic Separation</subject><subject>Immunophenotyping</subject><subject>Kinases</subject><subject>lentiviral vectors</subject><subject>Lentivirus - genetics</subject><subject>Life span</subject><subject>Mice</subject><subject>Original</subject><subject>Peripheral blood</subject><subject>Purification</subject><subject>Severe combined immunodeficiency</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transduction, Genetic</subject><subject>Transgenes</subject><subject>Transplants &amp; implants</subject><issn>1525-0016</issn><issn>1525-0024</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kU9r20AQxUVpaNK0n6BQFnrpxcrsX0uHFoJx40Agh6SXXpbVamStsbTqrmTwt-86TkzTQ08zsL95O29eln2ikFOg6mqT77uxxZwBnecgc2D8TXZBJZMzACbennqqzrP3MW5SR2Wp3mXnrFCKJ5GL7NdtNwS_c_2a3GCP5LHFYIY9WTaNsw57uydjG_y0blNFsuyDs22H_Uh8Q1ZTZ3qyws6MfvAOR2fJw4gdWeB2Gz9kZ43ZRvz4XC-znz-Wj4vV7O7-5nZxfTezopiPs6oSAEVZADSFYAIF56WpDLAGa8MN44rxppJUMVGI2iC1CKUFI1FVEoqGX2bfj7rDVHVY27RcMFs9BNeZsNfeOP36pXetXvudlrIoQfEk8PVZIPjfE8ZRdy7aZMH06KeoaUklF3NWiIR--Qfd-Cn0yZ5mNHmgULIDxY-UDT7GgM1pGQr6kJ3e6Kfs9CE7DVKn7NLU5799nGZewkrAtyOA6Zo7h0HHp4iwdgHtqGvv_vvBH6HgrGA</recordid><startdate>20170906</startdate><enddate>20170906</enddate><creator>Masiuk, Katelyn E.</creator><creator>Brown, Devin</creator><creator>Laborada, Jennifer</creator><creator>Hollis, Roger P.</creator><creator>Urbinati, Fabrizia</creator><creator>Kohn, Donald B.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><general>American Society of Gene &amp; Cell Therapy</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20170906</creationdate><title>Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells</title><author>Masiuk, Katelyn E. ; Brown, Devin ; Laborada, Jennifer ; Hollis, Roger P. ; Urbinati, Fabrizia ; Kohn, Donald B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ADP-ribosyl Cyclase 1 - metabolism</topic><topic>Animals</topic><topic>Antigens, CD34 - metabolism</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>CD34 antigen</topic><topic>CD38 antigen</topic><topic>Clinical trials</topic><topic>Cloning</topic><topic>Conflicts of interest</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>Genes, Reporter</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - genetics</topic><topic>Good Manufacturing Practice</topic><topic>Graft Survival</topic><topic>Hematological diseases</topic><topic>Hematopoietic Stem Cell Transplantation</topic><topic>Hematopoietic stem cells</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - metabolism</topic><topic>Humans</topic><topic>Hypothesis testing</topic><topic>Immunomagnetic Separation</topic><topic>Immunophenotyping</topic><topic>Kinases</topic><topic>lentiviral vectors</topic><topic>Lentivirus - genetics</topic><topic>Life span</topic><topic>Mice</topic><topic>Original</topic><topic>Peripheral blood</topic><topic>Purification</topic><topic>Severe combined immunodeficiency</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transduction, Genetic</topic><topic>Transgenes</topic><topic>Transplants &amp; implants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masiuk, Katelyn E.</creatorcontrib><creatorcontrib>Brown, Devin</creatorcontrib><creatorcontrib>Laborada, Jennifer</creatorcontrib><creatorcontrib>Hollis, Roger P.</creatorcontrib><creatorcontrib>Urbinati, Fabrizia</creatorcontrib><creatorcontrib>Kohn, Donald B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masiuk, Katelyn E.</au><au>Brown, Devin</au><au>Laborada, Jennifer</au><au>Hollis, Roger P.</au><au>Urbinati, Fabrizia</au><au>Kohn, Donald B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells</atitle><jtitle>Molecular therapy</jtitle><addtitle>Mol Ther</addtitle><date>2017-09-06</date><risdate>2017</risdate><volume>25</volume><issue>9</issue><spage>2163</spage><epage>2175</epage><pages>2163-2175</pages><issn>1525-0016</issn><eissn>1525-0024</eissn><abstract>Lentiviral vector (LV)-based hematopoietic stem cell (HSC) gene therapy is becoming a promising clinical strategy for the treatment of genetic blood diseases. However, the current approach of modifying 1 × 108 to 1 × 109 CD34+ cells per patient requires large amounts of LV, which is expensive and technically challenging to produce at clinical scale. Modification of bulk CD34+ cells uses LV inefficiently, because the majority of CD34+ cells are short-term progenitors with a limited post-transplant lifespan. Here, we utilized a clinically relevant, immunomagnetic bead (IB)-based method to purify CD34+CD38− cells from human bone marrow (BM) and mobilized peripheral blood (mPB). IB purification of CD34+CD38− cells enriched severe combined immune deficiency (SCID) repopulating cell (SRC) frequency an additional 12-fold beyond standard CD34+ purification and did not affect gene marking of long-term HSCs. Transplant of purified CD34+CD38− cells led to delayed myeloid reconstitution, which could be rescued by the addition of non-transduced CD38+ cells. Importantly, LV modification and transplantation of IB-purified CD34+CD38− cells/non-modified CD38+ cells into immune-deficient mice achieved long-term gene-marked engraftment comparable with modification of bulk CD34+ cells, while utilizing ∼7-fold less LV. Thus, we demonstrate a translatable method to improve the clinical and commercial viability of gene therapy for genetic blood cell diseases. [Display omitted] Hematopoietic stem cell (HSC) gene therapy is a promising clinical strategy to treat a wide range of genetic blood diseases. Masiuk and colleagues demonstrate a clinically relevant method to improve HSC gene therapy efficiency through isolation and transplantation of highly purified HSCs prior to lentiviral (LV) transduction. Enhanced HSC enrichment allows for a 5- to 10-fold reduction in LV dose and culture scale compared with currently used methods.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>28663101</pmid><doi>10.1016/j.ymthe.2017.05.023</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-0016
ispartof Molecular therapy, 2017-09, Vol.25 (9), p.2163-2175
issn 1525-0016
1525-0024
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589063
source PubMed (Medline)
subjects ADP-ribosyl Cyclase 1 - metabolism
Animals
Antigens, CD34 - metabolism
Blood
Bone marrow
CD34 antigen
CD38 antigen
Clinical trials
Cloning
Conflicts of interest
Experiments
Flow cytometry
Gene Expression
Gene therapy
Gene Transfer Techniques
Genes, Reporter
Genetic Therapy
Genetic Vectors - genetics
Good Manufacturing Practice
Graft Survival
Hematological diseases
Hematopoietic Stem Cell Transplantation
Hematopoietic stem cells
Hematopoietic Stem Cells - cytology
Hematopoietic Stem Cells - metabolism
Humans
Hypothesis testing
Immunomagnetic Separation
Immunophenotyping
Kinases
lentiviral vectors
Lentivirus - genetics
Life span
Mice
Original
Peripheral blood
Purification
Severe combined immunodeficiency
Stem cell transplantation
Stem cells
Transduction, Genetic
Transgenes
Transplants & implants
title Improving Gene Therapy Efficiency through the Enrichment of Human Hematopoietic Stem Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Gene%20Therapy%20Efficiency%20through%20the%20Enrichment%20of%20Human%20Hematopoietic%20Stem%20Cells&rft.jtitle=Molecular%20therapy&rft.au=Masiuk,%20Katelyn%20E.&rft.date=2017-09-06&rft.volume=25&rft.issue=9&rft.spage=2163&rft.epage=2175&rft.pages=2163-2175&rft.issn=1525-0016&rft.eissn=1525-0024&rft_id=info:doi/10.1016/j.ymthe.2017.05.023&rft_dat=%3Cproquest_pubme%3E1915347284%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-bb40089800f8424e4339aba02feda3a23623fb5162484dae1ce09c0a5e6b508f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2198010924&rft_id=info:pmid/28663101&rfr_iscdi=true