Loading…
New Late Permian tectonic model for South Africa’s Karoo Basin: foreland tectonics and climate change before the end-Permian crisis
Late Permian Karoo Basin tectonics in South Africa are reflected as two fining-upward megacycles in the Balfour and upper Teekloof formations. Foreland tectonics are used to explain the cyclic nature and distribution of sedimentation, caused by phases of loading and unloading in the southern source...
Saved in:
Published in: | Scientific reports 2017-09, Vol.7 (1), p.10861-7, Article 10861 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Late Permian Karoo Basin tectonics in South Africa are reflected as two fining-upward megacycles in the Balfour and upper Teekloof formations. Foreland tectonics are used to explain the cyclic nature and distribution of sedimentation, caused by phases of loading and unloading in the southern source areas adjacent to the basin. New data supports this model, and identifies potential climatic effects on the tectonic regime. Diachronous second-order subaerial unconformities (SU) are identified at the base and top of the Balfour Formation. One third-order SU identified coincides with a faunal turnover which could be related to the Permo-Triassic mass extinction (PTME). The SU are traced, for the first time, to the western portion of the basin (upper Teekloof Formation). Their age determinations support the foreland basin model as they coincide with dated paroxysms. A condensed distal (northern) stratigraphic record is additional support for this tectonic regime because orogenic loading and unloading throughout the basin was not equally distributed, nor was it in-phase. This resulted in more frequent non-deposition with increased distance from the tectonically active source. Refining basin dynamics allows us to distinguish between tectonic and climatic effects and how they have influenced ancient ecosystems and sedimentation through time. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-09853-3 |