Loading…
Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress
Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porc...
Saved in:
Published in: | Scientific reports 2017-09, Vol.7 (1), p.11114-13, Article 11114 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Melatonin has antioxidant and scavenger effects in the cellular antioxidant system. This research investigated the protective effects and underlying mechanisms of melatonin action in porcine somatic cell nuclear transfer (SCNT) embryos. The results suggested that the developmental competence of porcine SCNT embryos was considerably enhanced after melatonin treatment. In addition, melatonin attenuated the increase in reactive oxygen species levels induced by oxidative stress, the decrease in glutathione levels, and the mitochondrial dysfunction. Importantly, melatonin inhibited phospho-histone H2A.X (γH2A.X) expression and comet tail formation, suggesting that γH2A.X prevents oxidative stress-induced DNA damage. The expression of genes involved in homologous recombination and non-homologous end-joining pathways for the repair of double-stranded breaks (DSB) was reduced upon melatonin treatment in porcine SCNT embryos at day 5 of development under oxidative stress condition. These results indicated that melatonin promoted porcine SCNT embryo development by preventing oxidative stress-induced DNA damage via quenching of free radical formation. Our results revealed a previously unrecognized regulatory effect of melatonin in response to oxidative stress and DNA damage. This evidence provides a novel mechanism for the improvement in SCNT embryo development associated with exposure to melatonin. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-11161-9 |